The resistance switching dynamics of TiN/HfO2/Pt devices is analyzed in this paper. When biased with a voltage ramp of appropriate polarity, the devices experience SET transitions from high to low resistance states in an abrupt manner, which allows identifying a threshold voltage. However, we find that the stimulation with trains of identical pulses at voltages near the threshold results in a gradual SET transition, whereby the resistive state visits a continuum of intermediate levels as it approaches some low resistance state limit. On the contrary, RESET transitions from low to high resistance states proceed in a gradual way under voltage ramp stimulation, while gradual resistance changes driven by trains of identical spikes cover only a limited resistance window. The results are discussed in terms of the relations among the thermo-electrochemical effects of Joule heating, ion mobility, and resistance change, which provide positive and negative closed loop processes in SET and RESET, respectively. Furthermore, the effect of the competition between opposite tendencies of filament dissolution and formation at opposite metal/HfO2 interfaces is discussed as an additional ingredient affecting the switching dynamics.

1.
L. O.
Chua
and
S. M.
Kang
,
Proc. IEEE
64
,
209
(
1976
).
3.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
,
Nat. Nanotechnol.
8
,
13
(
2013
).
4.
I.
Gupta
,
A.
Serb
,
A.
Khiat
,
R.
Zeitler
,
S.
Vassanelli
, and
T.
Prodromakis
, e-print arXiv:1507.06832 [cs.ET].
5.
E.
Covi
,
S.
Brivio
,
M.
Fanciulli
, and
S.
Spiga
,
Microelectron. Eng.
147
,
41
(
2015
).
6.
E.
Covi
,
S.
Brivio
,
A.
Serb
,
T.
Prodromakis
,
M.
Fanciulli
, and
S.
Spiga
, in
Proceedings of 2016 IEEE International Symposium on Circuits and Systems (ISCAS) Montreal, CA, 22–25 May 2016
, pp.
393
396
.
7.
S.
La Barbera
,
D.
Vuillaume
, and
F.
Alibart
,
ACS Nano
9
,
941
(
2015
).
8.
R.
Berdan
,
E.
Vasilaki
,
A.
Khiat
,
G.
Indiveri
,
A.
Serb
, and
T.
Prodromakis
,
Sci. Rep.
6
,
18639
(
2016
).
9.
T.
Chang
,
S.-H.
Jo
, and
W.
Lu
,
ACS Nano
5
,
7669
(
2011
).
10.
S.
Menzel
,
U.
Böttger
,
M.
Wimmer
, and
M.
Salinga
,
Adv. Funct. Mater.
25
,
6306
(
2015
).
11.
S.
Kim
,
C.
Du
,
P.
Sheridan
,
W.
Ma
,
S.
Choi
, and
W. D.
Lu
,
Nano Lett.
15
,
2203
(
2015
).
12.
C.
Du
,
W.
Ma
,
T.
Chang
,
P.
Sheridan
, and
W. D.
Lu
,
Adv. Funct. Mater.
25
,
4290
(
2015
).
13.
A.
Marchewka
,
B.
Roesgen
,
K.
Skaja
,
H.
Du
,
C.-L.
Jia
,
J.
Mayer
,
V.
Rana
,
R.
Waser
, and
S.
Menzel
,
Adv. Electron. Mater.
2
,
1500233
(
2015
).
14.
S.
Yu
,
B.
Gao
,
Z.
Fang
,
H.
Yu
,
J.
Kang
, and
H.-S. P.
Wong
,
Front. Neurosci.
7
,
186
(
2013
).
15.
S.
Park
,
M.
Chu
,
J.
Kim
,
J.
Noh
,
M.
Jeon
,
B.
Hun Lee
,
H.
Hwang
,
B.
Lee
, and
B.
Lee
,
Sci. Rep.
5
,
10123
(
2015
).
16.
D.
Garbin
,
E.
Vianello
,
O.
Bichler
,
Q.
Rafhay
,
C.
Gamrat
,
G.
Ghibaudo
,
B.
DeSalvo
, and
L.
Perniola
,
IEEE Trans. Electron Devices
62
,
2494
(
2015
).
17.
S.
Yu
,
B.
Gao
,
Z.
Fang
,
H.
Yu
,
J.
Kang
, and
H.-S. P.
Wong
,
Adv. Mater.
25
,
1774
(
2013
).
18.
D. S.
Jeong
,
I.
Kim
,
M.
Ziegler
, and
H.
Kohlstedt
,
RSC Adv.
3
,
3169
(
2013
).
19.
Y.
Matveyev
,
K.
Egorov
,
A.
Markeev
, and
A.
Zenkevich
,
J. Appl. Phys.
117
,
44901
(
2015
).
20.
B.
Gao
,
L.
Liu
, and
J.
Kang
,
Prog. Nat. Sci.: Mater. Int.
25
,
47
(
2015
).
21.
J.
Frascaroli
,
F. G.
Volpe
,
S.
Brivio
, and
S.
Spiga
,
Microelectron. Eng.
147
,
104
(
2015
).
22.
J.
Frascaroli
,
S.
Brivio
,
F.
Ferrarese Lupi
,
G.
Seguini
,
L.
Boarino
,
M.
Perego
, and
S.
Spiga
,
ACS Nano
9
,
2518
(
2015
).
23.
S.
Brivio
,
E.
Covi
,
A.
Serb
,
T.
Prodromakis
,
M.
Fanciulli
, and
S.
Spiga
, in
2015 International Conference On Memristive Systems, MEMRISYS, 2015
, pp.
1
2
.
24.
S.
Brivio
,
G.
Tallarida
,
E.
Cianci
, and
S.
Spiga
,
Nanotechnology
25
,
385705
(
2014
).
25.
L.
Goux
,
A.
Fantini
,
B.
Govoreanu
,
G.
Kar
,
S.
Clima
,
Y.-Y.
Chen
,
R.
Degraeve
,
D. J.
Wouters
,
G.
Pourtois
, and
M.
Jurczak
,
ECS Solid State Lett.
1
,
P63
(
2012
).
26.
X.
Chen
,
W.
Hu
,
Y.
Li
,
S.
Wu
, and
D.
Bao
,
Appl. Phys. Lett.
108
,
53504
(
2016
).
27.
S.
Brivio
,
J.
Frascaroli
, and
S.
Spiga
,
Appl. Phys. Lett.
107
,
23504
(
2015
).
28.
R.
Berdan
,
A.
Serb
,
A.
Khiat
,
A.
Regoutz
,
C.
Papavassiliou
, and
T.
Prodromakis
,
IEEE Trans. Electron Devices
62
,
2190
(
2015
).
29.
C.
Ye
,
C.
Zhan
,
T.-M.
Tsai
,
K.-C.
Chang
,
M.-C.
Chen
,
T.-C.
Chang
,
T.
Deng
, and
H.
Wang
,
Appl. Phys. Express
7
,
34101
(
2014
).
30.
S.
Ambrogio
,
S.
Balatti
,
D. C.
Gilmer
, and
D.
Ielmini
,
IEEE Trans. Electron Devices
61
,
2378
(
2014
).
31.
A.
Padovani
,
L.
Larcher
,
O.
Pirrotta
,
L.
Vandelli
, and
G.
Bersuker
,
IEEE Trans. Electron Devices
62
,
1998
(
2015
).
32.
L.
Zhao
,
H.-Y.
Chen
,
S.-C.
Wu
,
Z.
Jiang
,
S.
Yu
,
T.-H.
Hou
,
H.-S. P.
Wong
, and
Y.
Nishi
,
Nanoscale
6
,
5698
(
2014
).
33.
S.
Menzel
,
M.
Waters
,
A.
Marchewka
,
U.
Böttger
,
R.
Dittmann
, and
R.
Waser
,
Adv. Funct. Mater.
21
,
4487
(
2011
).
34.
B.
Gao
,
B.
Chen
,
Y.
Chen
,
L.
Liu
,
X.
Liu
,
R.
Han
, and
J.
Kang
, in
2010 10th IEEE International Conference Solid-State Integrated Circuit Technology, ICSICT
(
2010
), pp.
1145
1147
.

Supplementary Material

You do not currently have access to this content.