The mechanism of light-soaking phenomenon in inverted-type organic solar cells (IOSCs) with a structure of indium-tin-oxide/TiOx/P3HT:PCBM/Au was studied by electron spin resonance (ESR) spectroscopy. Charge accumulation in the cell during UV-light irradiation was observed using ESR, which was clearly correlated with the light-soaking phenomenon. The origin of the charge accumulation is clarified as holes that are deeply trapped at p-type P3HT polymer-chain ends with bromine after hole transfer from the band excitation in the TiOx layer. The holes are considered to be electrostatically attracted to trapped electrons in the TiOx layer after the band excitation. These accumulated charges are the origin of the light-soaking phenomenon. Our results strongly suggest that passivation of the residual OH groups in the TiOx layer is needed to avoid the light-soaking phenomenon by preventing electron trappings, a step that is indispensable in the operation of highly stable IOSCs without UV-light irradiation based on a low-cost and low-temperature device fabrication process using flexible plastic substrates.

1.
L. M.
Chen
,
Z.
Hong
,
G.
Li
, and
Y.
Yang
,
Adv. Mater.
21
,
1434
(
2009
).
2.
T.
Kuwabara
,
T.
Nakayama
,
K.
Uozumi
,
T.
Yamaguchi
, and
K.
Takahashi
,
Sol. Energy Mater. Sol. Cells
92
,
1476
(
2008
).
3.
Z.
He
,
C.
Zhong
,
S.
Su
,
M.
Xu
,
H.
Wu
, and
Y.
Cao
,
Nat. Photonics
6
,
591
(
2012
).
4.
A. K. K.
Kyaw
,
D. H.
Wang
,
V.
Gupta
,
J.
Zhang
,
S.
Chand
,
G. C.
Bazan
, and
A. J.
Heeger
,
Adv. Mater.
25
,
2397
(
2013
).
5.
M.
Song
,
J.-W.
Kang
,
D.-H.
Kim
,
J.-D.
Kwon
,
S.-G.
Park
,
S.
Nam
,
S.
Jo
,
S. Y.
Ryu
, and
C. S.
Kim
,
Appl. Phys. Lett.
102
,
143303
(
2013
).
6.
S.
Woo
,
W. H.
Kim
,
H.
Kim
,
Y.
Yi
,
H.-K.
Lyu
, and
Y.
Kim
,
Adv. Energy Mater.
4
,
1301692
(
2014
).
7.
V.
Vohra
,
K.
Kawashima
,
T.
Kakara
,
T.
Koganezawa
,
I.
Osaka
,
K.
Takimiya
, and
H.
Murata
,
Nat. Photonics
9
,
403
(
2015
).
8.
H.
Schmidt
,
K.
Zilberberg
,
S.
Schmale
,
H.
Flugge
,
T.
Riedl
, and
W.
Kowalsky
,
Appl. Phys. Lett.
96
,
243305
(
2010
).
9.
J.
Kim
,
G.
Kim
,
Y.
Choi
,
J.
Lee
,
S. H.
Park
, and
K.
Lee
,
J. Appl. Phys.
111
,
114511
(
2012
).
10.
S.
Chambon
,
E.
Destouesse
,
B.
Pavageau
,
L.
Hirsch
, and
G.
Wantz
,
J. Appl. Phys.
112
,
094503
(
2012
).
11.
Z.
Lin
,
C.
Jiang
,
C.
Zhu
, and
J.
Zhang
,
ACS Appl. Mater. Interfaces
5
,
713
(
2013
).
12.
S.
Trost
,
K.
Zilberberg
,
A.
Behrendt
,
A.
Polywka
,
P.
Gorrn
,
P.
Reckers
,
J.
Maibach
,
T.
Mayer
, and
T.
Riedl
,
Adv. Energy Mater.
3
,
1437
(
2013
).
13.
F. J.
Lim
,
Y. T.
Set
,
A.
Krishnamoorthy
,
J.
Ouyang
,
J.
Luther
, and
G. W.
Ho
,
J. Mater. Chem. A
3
,
314
(
2015
).
14.
S.
Trost
,
T.
Becker
,
K.
Zilberberg
,
A.
Behrendt
,
A.
Polywka
,
R.
Heiderhoff
,
P.
Gorrn
, and
T.
Riedl
,
Sci. Rep.
5
,
7765
(
2015
).
15.
T.
Kuwabara
,
K.
Yano
,
T.
Yamaguchi
,
T.
Taima
,
K.
Takahashi
,
D.
Son
, and
K.
Marumoto
,
J. Phys. Chem. C
119
,
5274
(
2015
).
16.
C. S.
Kim
,
S. S.
Lee
,
E. D.
Gomez
,
J. B.
Kim
, and
Y.-L.
Loo
,
Appl. Phys. Lett.
94
,
113302
(
2009
).
17.
K.
Marumoto
,
S.
Kuroda
,
T.
Takenobu
, and
Y.
Iwasa
,
Phys. Rev. Lett.
97
,
256603
(
2006
).
18.
T.
Nagamori
and
K.
Marumoto
,
Adv. Mater.
25
,
2362
(
2013
).
19.
K.
Marumoto
,
T.
Fujimori
,
M.
Ito
, and
T.
Mori
,
Adv. Energy Mater.
2
,
591
(
2012
).
20.
J.
De Ceuster
,
E.
Goovaerts
,
A.
Bouwen
,
J. C.
Hummelen
, and
V.
Dyakonov
,
Phys. Rev. B
64
,
195206
(
2001
).
21.
N. A.
Schultz
,
M. C.
Scharber
,
C. J.
Brabec
, and
N. S.
Sariciftci
,
Phys. Rev. B
64
,
245210
(
2001
).
22.
O. G.
Poluektov
,
S.
Filippone
,
N.
Martín
,
A.
Sperlich
,
C.
Deibel
, and
V.
Dyakonov
,
J. Phys. Chem. B
114
,
14426
(
2010
).
23.
A.
Aguirre
,
S. C. J.
Meskers
,
R. A. J.
Janssen
, and
H.-J.
Egelhaaf
,
Org. Electron.
12
,
1657
(
2011
).
24.
J.
Niklas
,
K. L.
Mardis
,
B. P.
Banks
,
G. M.
Grooms
,
A.
Sperlich
,
V.
Dyakonov
,
S.
Beaupré
,
M.
Leclerc
,
T.
Xu
,
L.
Yu
, and
O. G.
Poluektov
,
Phys. Chem. Chem. Phys.
15
,
9562
(
2013
).
25.
R. D.
McCullough
,
S.
Tristram-Nagle
,
S. P.
Williams
,
R. D.
Lowe
, and
M.
Jayaraman
,
J. Am. Chem. Soc.
115
,
4910
(
1993
).
26.
T.-A.
Chen
,
X.
Wu
, and
R. D.
Rieke
,
J. Am. Chem. Soc.
117
,
233
(
1995
).
27.
R. S.
Loewe
,
S. M.
Khersonsky
, and
R. D.
McCullough
,
Adv. Mater.
11
,
250
(
1999
).
28.
Y.
Kim
,
S.
Cook
,
J.
Kirkpatrick
,
J.
Nelson
,
J. R.
Durrant
,
D. D. C.
Bradley
,
M.
Giles
,
M.
Heeney
,
R.
Hamilton
, and
I.
McCulloch
,
J. Phys. Chem. C
111
,
8137
(
2007
).
29.
J. W.
Rabalais
,
L. O.
Werme
,
T.
Bergmark
,
L.
Karlsson
, and
K.
Siegbahn
,
Int. J. Mass Spectrom. Ion Phys.
9
,
185
(
1972
).
30.
J. J.
Butler
and
T.
Baer
,
J. Am. Chem. Soc.
102
,
6764
(
1980
).
31.
D.
Son
,
K.
Marumoto
,
T.
Kizuka
, and
Y.
Shimoi
,
Synth. Met.
162
,
2451
(
2012
).
32.
M.
Chiesa
,
M. C.
Paganini
,
S.
Livraghi
, and
E.
Giamello
,
Phys. Chem. Chem. Phys.
15
,
9435
(
2013
).
33.
T.
Kuwabara
,
H.
Sugiyama
,
M.
Kuzuba
,
T.
Yamaguchi
, and
K.
Takahashi
,
Org. Electron.
11
,
1136
(
2010
).
34.
L.-L.
Chua
,
J.
Zaumseil
,
J.-F.
Chang
,
E. C.-W.
Ou
,
P. K.-H.
Ho
,
H.
Sirringhaus
, and
R. H.
Friend
,
Nature
434
,
194
(
2005
).

Supplementary Material

You do not currently have access to this content.