Laser pulse induced photo-detachment combined with Langmuir probing has been introduced to diagnose plasma electronegativity. This technique uses a laser pulse to convert negative ions into electron-atom pairs and tracks the change of electron saturation current by a Langmuir probe. The existing model determines plasma electronegativity as the ratio of electron saturation current before and after detachment. However, this model depends on various assumptions and neglects the formation of a potential barrier between the laser channel and surrounding electronegative plasma. In this letter, we present a new analytical model to analyze photo-detachment signals in order to improve the accuracy of electronegativity measurements and extend this technique for measuring electron temperature and charged species density. This analytical model is supported by Particle-In-Cell simulation of electronegative plasma dynamics following laser photo-detachment. The analysis of the signal, detected on a simulated probe, shows that the present analytical model determines electronegativity, electron temperature, and plasma density with a relative error of ∼20%, ∼20%, and ∼50%, respectively, whereas the electronegativity obtained from a previous model is underestimated by an order of magnitude.

1.
D. J.
Economou
,
Appl. Surf. Sci.
253
,
6672
(
2007
).
2.
J. P.
Boeuf
,
G. J. M.
Hagelaar
,
P.
Sarrailh
,
G.
Fubiani
, and
N.
Kohen
,
Plasma Sources Sci. Technol.
20
,
015002
(
2011
).
3.
R.
Hemsworth
,
H.
Decamps
,
J.
Graceffa
,
B.
Schunke
,
M.
Tanaka
,
M.
Dremel
,
A.
Tanga
,
H. P. L.
De Esch
,
F.
Geli
,
J.
Milnes
,
T.
Inoue
,
D.
Marcuzzi
,
P.
Sonato
, and
P.
Zaccaria
,
Nucl. Fusion
49
,
045006
(
2009
).
4.
F.
Taccogna
,
S.
Longo
,
M.
Capitelli
, and
R.
Schneider
,
IEEE Trans. Plasma Sci.
36
,
1589
(
2008
).
5.
A.
Aanesland
,
A.
Meige
, and
P.
Chabert
,
J. Phys: Conf. Ser.
162
,
012009
(
2009
).
6.
L. M.
Branscomb
and
S. J.
Smith
,
EOS Trans. AGU
36
,
755
(
1955
).
7.
A. G.
Nikitin
,
F. El.
Balghiti
, and
M.
Bacal
,
Plasma Sources Sci. Technol.
5
,
37
(
1996
).
8.
M.
Bacal
,
Rev. Sci. Instrum.
71
,
3981
(
2000
).
9.
N.
Sirse
,
S. K.
Karkari
,
M. A.
Mujawar
,
J.
Conway
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
20
,
055003
(
2011
).
10.
N.
Sirse
,
S. K.
Karkari
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
24
,
022001
(
2015
).
11.
M.
Bacal
and
G. W.
Hamilton
,
Phys. Rev. Lett.
42
,
1538
(
1979
).
12.
J.
Conway
,
N.
Sirse
,
S. K.
Karkari
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
19
,
065002
(
2010
).
13.
P.
Devynck
,
J.
Auvray
,
M.
Bacal
,
P.
Berlemont
,
J.
Bruneteau
,
R.
Leroy
, and
R. A.
Stern
,
Rev. Sci. Instrum.
60
,
2873
(
1989
).
14.
R. A.
Stern
,
P.
Devynck
,
M.
Bacal
,
P.
Berlemont
, and
F.
Hillion
,
Phys. Rev. A
41
,
3307
(
1990
).
15.
M.
Nishiura
,
M.
Sasao
,
M.
Wada
, and
M.
Bacal
,
Phys. Rev. E
63
,
036408
(
2001
).
16.
F.
El Balghiti-Sube
,
F. G.
Baksht
, and
M.
Bacal
,
Rev. Sci. Instrum.
67
,
2221
(
1996
).
17.
T.
Teichmann
,
C.
Külling
,
K.
Dittmann
,
K.
Matyash
,
R.
Schneider
, and
J.
Meichsner
,
Phys. Plasmas
20
,
113509
(
2013
).
18.
R.
Dodd
,
S.-D.
You
,
P. M.
Bryant
, and
J. W.
Bradley
,
Plasma Sources Sci. Technol.
19
,
015021
(
2010
).
19.
J. W.
Bradley
,
R.
Dodd
,
S.-D.
You
,
N.
Sirse
, and
S. K.
Karkari
,
J. Vac. Sci. Technol. A
29
,
031305
(
2011
).
20.
S.
Christ-Koch
,
U.
Fantz
,
M.
Berger
, and
NNBI Team
,
Plasma Sources Sci. Technol.
18
,
025003
(
2009
).
21.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
McGraw-Hill
,
New York
,
1985
).
22.
N.
Oudini
,
F.
Taccogna
,
A.
Bendib
, and
A.
Aanesland
,
Phys. Plasmas
21
,
063515
(
2014
).
23.
N.
Oudini
,
N.
Sirse
,
R.
Benallal
,
F.
Taccogna
,
A.
Aanesland
,
A.
Bendib
, and
A. R.
Ellingboe
,
Phys. Plasmas
22
,
073509
(
2015
).
24.
N.
Sirse
,
N.
Oudini
,
A.
Bendib
, and
A. R
Ellingboe
,
Plasma Sources Sci. Technol.
25
,
04LT01
(
2016
).
You do not currently have access to this content.