The physical nature and concentration of paramagnetic point defects in the dielectrics of superconducting planar microwave resonators have been determined using in-situ electron paramagnetic resonance spectroscopy. To perform this work, the quality factor of parallel plate and stripline resonators was measured as a function of the magnitude of a magnetic-field applied parallel to the electrode surfaces. YBa2Cu3O7−δ thin film electrodes proved to be a preferred choice over Nb and MgB2 because they are readily available and have a small surface resistance (Rs) up to high temperatures (∼77 K) and magnetic fields (i.e., <1 T). Stripline resonators with a widely used high performance microwave dielectric, Co2+-doped Ba(Zn1/3Nb2/3)O3, are shown to have losses dominated by d-electron spin-excitations in exchange-coupled Co2+ point-defect clusters, even in the absence of an applied magnetic field. A significant enhanced microwave loss in stripline and parallel plate resonators is found to correlate with the presence of paramagnetic Mn2+ dopants in Ba(Zn1/3Ta2/3)O3 ceramics and dangling bond states in amorphous Si thin films, although the identification of the dominant loss mechanism(s) in these dielectrics requires further investigation.

1.
H.
Yabuki
,
M.
Sagawa
,
M.
Matsuo
, and
M.
Makimoto
, “
Stripline dual-mode ring resonators and their application to microwave devices
,”
IEEE Trans. Microwave Theory Tech.
44
(
5
),
723
729
(
1996
).
2.
E. J.
Denlinger
, “
Losses of microstrip lines
,”
IEEE Trans. Microwave Theory Tech.
28
(
6
),
513
(
1980
).
3.
C.-Y.
Chi
and
G. M.
Rebeiz
, “
Conductor-loss limited stripline resonator and filters
,”
IEEE Trans. Microwave Theory Tech.
44
(
4
),
626
(
1996
).
4.
S. H.
Talisa
,
M. A.
Janocko
,
C.
Moskowitz
,
J.
Talvacchio
,
J. F.
Billing
,
R.
Brown
,
D. C.
Buck
,
C. K.
Jones
,
B. R.
McAvoy
,
G. R.
Wagner
, and
D. H.
Watt
, “
Low- and high-temperature superconducting microwave filters
,”
IEEE Trans. Microwave Theory Tech.
39
(
9
),
1448
(
1991
).
5.
N.
Newman
and
W. G.
Lyons
, “
High-temperature superconducting microwave devices: Fundamental issues in materials, physics, and engineering
,”
J. Supercond.
6
(
3
),
519
(
1993
).
6.
P. K.
Day
,
H. G.
LeDuc
,
B. A.
Mazin
,
A.
Vayonakis
, and
J.
Zmuidzinas
, “
A broadband superconducting detector suitable for use in large arrays
,”
Nature
425
,
817
821
(
2003
).
7.
R.
Barends
,
J. J. A.
Baselmans
,
J. N.
Hovenier
,
J. R.
Gao
,
S. J. C.
Yates
,
T. M.
Klapwijk
, and
H. F. C.
Hoevers
, “
Niobium and tantalum high Q resonators for photon detectors
,”
IEEE Trans. Appl. Supercond.
17
(
2
),
263
(
2007
).
8.
R.
Amsuss
,
Ch.
Koller
,
T.
Nobauer
,
S.
Rotter
,
K.
Sandner
,
S.
Schneider
,
M.
Schrambock
,
G.
Steinhauser
,
H.
Ritsch
,
J.
Schmiedmayer
, and
J.
Majer
, “
Cavity QED with magnetically coupled collective spin states
,”
Phys. Rev. Lett.
107
,
060502
(
2011
).
9.
A.
Ghirri
,
C.
Bonizzoni
,
D.
Gerace
,
S.
Sanna
,
A.
Cassinese
, and
M.
Affronte
, “
YBa2Cu3O7 microwave resonators for strong collective coupling with spin ensembles
,”
Appl. Phys. Lett.
106
,
184101
(
2015
).
10.
Y.
Kubo
,
F. R.
Ong
,
P.
Bertet
,
D.
Vion
,
V.
Jacques
,
D.
Zheng
,
A.
Dreau
,
J. F.
Roch
,
A.
Auffeves
,
F.
Jelezko
,
J.
Wrachtrup
,
M. F.
Barthe
,
P.
Bergonzo
, and
D.
Esteve
,
Phys. Rev. Lett.
105
,
140502
(
2010
).
11.
L.
DiCarlo
,
J. M.
Chow
,
J. M.
Gambetta
,
L. S.
Bishop
,
B. R.
Johnson
,
D. I.
Schuster
,
J.
Majer
,
A.
Blais
,
L.
Frunzio
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Demonstration of two-qubit algorithms with a superconducting quantum processor
,”
Nature
460
,
240
244
(
2009
).
12.
K. B.
Cooper
,
M.
Steffen
,
R.
McDermott
,
R. W.
Simmonds
,
S. O. D. A.
Hite
,
D. P.
Pappas
, and
J. M.
Martinis
, “
Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout
,”
Phys. Rev. Lett.
93
,
180401
(
2004
).
13.
N. A.
Shtin
,
J. M. L.
Romero
, and
E.
Prokhorov
, “
Theory of fundamental microwave absorption in sapphire (a-Al2O3)
,”
J. Appl. Phys.
106
,
104115
(
2009
).
14.
V. L.
Gurevich
and
A. K.
Tagantsev
, “
Intrinsic dielectric loss in crystals
,”
Adv. Phys.
40
(
6
),
719
767
(
1991
).
15.
E.
Schlomann
, “
Dielectric losses in ionic crystals with disordered charge distributions
,”
Phys. Rev.
135
(
2A
),
413
419
(
1964
).
16.
H.
Tamura
, “
Microwave dielectric losses caused by lattice defects
,”
J. Eur. Ceram. Soc.
26
,
1775
1780
(
2006
).
17.
W.
Wersing
, “
High frequency ceramics dielectric and their application for microwave components
,” in
Electronic Ceramics
, edited by
B. C. H.
Steele
(
Elsevier Science Publishers
,
New York, NY, USA
,
1991
).
18.
A. R.
Von Hippel
,
Dielectrics and Waves
(
John Wileys & Sons, Inc.
,
New York, USA
,
1954
).
19.
V. B.
Braginsky
,
V. P.
Mitrofanov
, and
V. I.
Panov
,
Systems with Small Dissipation
(
University of Chicago Press
,
Chicago, IL
,
1985
).
20.
S.
Zhang
,
A.
Devonport
, and
N.
Newman
, “
Main source of microwave loss on transition-metal-doped Ba(Zn1/3Ta2/3)O3 and Ba(Zn1/3Nb2/3)O3 at cryogenic temperatures
,”
J. Am. Ceram. Soc.
98
(
4
),
1188
1194
(
2015
).
21.
L.
Liu
,
M.
Flores
, and
N.
Newman
, “
Microwave loss in high-performance dielectric Ba(Zn1/3Ta2/3)O3 at 4 K
,”
Phys. Rev. Lett.
109
,
257601
(
2012
).
22.
L.
Liu
,
A.
Matusevich
,
C.
Garg
, and
N.
Newman
, “
The dominance of paramagnetic loss in microwave dielectric ceramics at cryogenic temperatures
,”
Appl. Phys. Lett.
101
,
252901
(
2012
).
23.
D. P.
Pappas
,
M. R.
Vissers
,
D. S.
Wisbey
,
J. S.
Kline
, and
J.
Gao
, “
Two level system loss in superconducting microwave resonators
,”
IEEE Trans. Appl. Supercond.
21
(
3
),
871
(
2011
).
24.
J. M.
Martinis
,
K. B.
Cooper
,
R.
McDermott
,
M.
Steffen
,
M.
Ansmann
,
K. D.
Osborn
,
K.
Cicak
,
S.
Oh
,
D. P.
Papps
,
R. W.
Simmonds
, and
C. C.
Yu
, “
Decoherence in Josephson qubits from dielectric loss
,”
Phys. Rev. Lett.
95
,
210503
(
2005
).
25.
M.
Von Schikfus
and
S.
Hunklinger
, “
Saturation of the dielectric absorption of vitreous silica at low temperatures
,”
Phys. Lett. A
64
(
1
),
144
146
(
1977
).
26.
X. H.
Zeng
,
A. V.
Pogrebnyakov
,
A.
Kotcharov
,
J. E.
Jones
,
X. X.
Xi
,
E. M.
Lysczek
,
J. M.
Redwing
,
S. Y.
Xu
,
Q.
Li
,
J.
Lettieri
,
D. G.
Schlom
,
W.
Tian
,
X. Q.
Pan
, and
Z. K.
Liu
, “
In situ epitaxial MgB2 thin films for superconducting electronics
,”
Nat. Mater.
1
,
35
(
2002
).
27.
R. C.
Taber
, “
A parallel plate resonator technique for microwave loss measurements on superconductors
,”
Rev. Sci. Instrum.
61
(
8
),
2200
(
1990
);
N.
Newman
,
L.
Liu
,
R.
Hanley
, and
C.
Garg
, “
Resonator techniques to characterize material and device properties at microwave frequencies in the quantum design PPMS measurement system
,” Application Note No. 1084-750,
1
8
(
2013
);
S.
Zhang
, “
Mechanisms responsible for microwave properties in high performance dielectric materials
,” Ph.D. dissertation,
Arizona State University
,
2016
.
28.
N.
Belk
,
D. E.
Oates
,
D. A.
Feld
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Frequency and temperature dependence of the microwave surface impedance of YBa2Cu3O7δ thin films in a dc magnetic field: Investigation of vortex dynamics
,”
Phys. Rev. B
53
(
6
),
3459
(
1996
).
29.
D.
Bothner
,
T.
Gaber
,
M.
Kemmler
,
D.
Koelle
, and
R.
Kleiner
, “
Magnetic hysteresis effects in superconducting coplanar microwave resonators
,”
Phys. Rev. B
86
,
014517
(
2012
).
30.
G.
Rong
,
N.
Newman
,
B.
Shaw
, and
D.
Cronin
, “
Role of Ni and Zr doping on the electrical, magnetic, and structural properties of barium zinc tantalate ceramics
,”
J. Mater. Res.
14
(
10
),
4011
(
1999
).
31.
A.
Abragam
and
B.
Bleaney
,
Electron Paramagnetic Resonance of Transition Ions
(
Oxford University
,
London, UK
,
1970
).
32.
J. W. H.
Schreurs
, “
Low field hyperfine structure in the EPR spectra of Mn2+ containing glass
,”
J. Chem. Phys.
69
,
2151
(
1978
).
33.
D. L.
Griscom
and
R. E.
Griscom
, “
Paramagnetic resonance of Mn2+ in glasses and compounds of the lithium borate system
,”
J. Chem. Phys.
47
,
2711
(
1967
).
34.
G. D.
Watkins
and
J. W.
Corbett
, “
Electron paramagnetic resonance of defects in irradiated silicon
,”
Discuss. Faraday Soc.
31
,
86
(
1961
).
35.
M. H.
Brodsky
,
R. S.
Title
,
K.
Weiser
, and
G. D.
Pettit
, “
Structural, optical, and electrical properties of amorphous silicon films
,”
Phys. Rev. B
1
(
6
),
2632
(
1970
).
36.
M. H.
Brodsky
and
R. S.
Title
, “
Electron spin resonance in amorphous silicon, germanium, and silicon carbide
,”
Phys. Rev. Lett.
23
(
11
),
581
(
1969
).
37.
D.
Haneman
, “
Electron paramagnetic resonance from clean single-crystal cleavage surfaces of silicon
,”
Phys. Rev.
170
(
3
),
705
(
1968
).
38.
G. K.
Walters
and
T. L.
Estle
, “
Paramagnetic resonance of defects introduced near the surface of solids by mechanical damage
,”
J. Appl. Phys.
32
(
10
),
1854
(
1961
).
You do not currently have access to this content.