One of the most critical challenges for nanofluids in practical applications is related to their stability and reusability since a gradual agglomeration of nanoparticles in nanofluids occurs with time and is accelerated by heating. In this study, we propose a technique to maintain the performance and stability of nanofluids with the use of cavitating flows through micro orifices to prevent agglomeration and sedimentation of nanoparticles, which will increase the durability of the nanofluids. γ-Al2O3 (gamma-alumina) nanoparticles with a mean diameter of 20 nm suspended in water were utilized. In the current approach, a flow restrictive element induces sudden pressure, which leads to cavitation bubbles downstream from the orifice. The emerging bubbles interact with the agglomerated structure of nanoparticles and decrease its size through hitting or shock waves generated by their collapse, thereby increasing the stability and reusability of nanofluids. The method does not involve any use of expensive surfactants or surface modifiers, which might alter the thermophysical properties of nanofluids, may adversely influence their performance and biocompatibility, and may limit their effectiveness.

1.
S. U. S.
Choi
and
J. A.
Eastman
,
Report No. ANL/MSD/CP-84938, CONF-951135-29
,
1995
.
2.
J.
Buongiorno
,
J. Heat Transfer
128
,
240
(
2006
).
3.
S.
Jang
and
S.
Choi
,
Appl. Phys. Lett.
84
,
4316
(
2004
).
4.
S.
Kakac
and
A.
Pramuanjaroenkij
,
Int. J. Heat Mass Transfer
52
,
3187
(
2009
).
5.
Y.
Xuan
and
Q.
Li
,
Int. J. Heat Fluid Flow
21
,
58
(
2000
).
6.
I.
Bang
and
S.
Chang
,
Int. J. Heat Mass Transfer
48
,
2407
(
2005
).
7.
L.
Godson
,
B.
Raja
,
D.
Lal
, and
S.
Wongwises
,
Renewable Sustainable Energy Rev.
14
,
629
(
2010
).
8.
D.
Milanova
and
R.
Kumar
,
Appl. Phys. Lett.
87
,
233107
(
2005
).
9.
S.
Vemuri
and
K.
Kim
,
Int. Commun. Heat Mass Transfer
32
,
27
(
2005
).
10.
S.
Laurent
,
D.
Forge
,
M.
Port
, and
A.
Roch
,
Chem. Rev.
108
,
2064
(
2008
).
11.
C.
Batista
,
R.
Larson
, and
N.
Kotov
,
Science
350
,
1242477
(
2015
).
12.
K.
Khoshmanesh
,
A.
Almansouri
,
H.
Albloushi
,
P.
Yi
,
R.
Soffe
, and
K.
Kalantar-zadeh
,
Sci. Rep.
5
,
9942
(
2015
).
13.
B.
Mohan
,
W.
Yang
, and
S.
Chou
,
Eng. Appl. Comput. Fluid Mech.
8
,
70
(
2014
).
14.
O. Y.
Perk
,
M.
Şeşen
,
D.
Gozuacik
, and
A.
Koşar
,
Ann. Biomed. Eng.
40
,
1895
(
2012
).
15.
J.
Holl
,
J. Basic Eng.
92
,
681
(
1970
).
16.
R.
Knapp
,
J.
Daily
, and
F.
Hammitt
,
Cavitation
(
McGraw-Hill
,
New York
,
1970
).
17.
B.
Ran
and
J.
Katz
,
J. Fluid Mech.
224
,
91
(
1991
).
18.
A.
Koşar
,
O.
Oral
,
Z.
Itah
, and
D.
Gozuacik
,
IEEE Trans. Biomed. Eng.
58
,
1337
(
2011
).
19.
C.
Mishra
and
Y.
Peles
,
Phys. Fluids
17
,
113602
(
2005
).
20.
C.
Mishra
and
Y.
Peles
,
J. Microelectromech. Syst.
14
,
987
(
2005
).
21.
B.
Schneider
and
A.
Koşar
,
J. Heat Transfer
128
,
1293
(
2006
).
22.
B.
Schneider
,
A.
Koşar
, and
Y.
Peles
,
Int. J. Heat Mass Transfer
50
,
2838
(
2007
).
23.
J.
Desantes
,
R.
Payri
,
F.
Salvador
, and
J. D.
la Morena
,
Fuel
89
,
3033
(
2010
).
24.
M.
Shervani-Tabar
,
M.
Sheykhvazayefi
, and
M.
Ghorbani
,
Appl. Math. Model.
37
,
7778
(
2013
).
25.
A.
Koşar
,
K.
Şendur
, and
M. P.
Mengüç
, “
Flow system for avoiding particle agglomeration
,” Turkey patent PCT/TR2015/050145 (
2015
).
26.
M.
Karimzadehkhouei
,
S. E.
Yalcin
,
K.
Şendur
,
M.
Pınar Mengüç
, and
A.
Koşar
,
Exp. Therm. Fluid Sci.
67
,
37
(
2015
).
27.
E.
Kurtoğlu
,
A.
Kaya
,
D.
Gozuacik
,
H. F. Y.
Yagci Acar
, and
A.
Koşar
,
J. Therm. Sci. Eng. Appl.
6
,
034501
(
2014
).
28.
A.
Kasaeian
,
A.
Eshghi
, and
M.
Sameti
,
Renewable Sustainable Energy
43
,
584
(
2015
).
29.
A. N.
Al-Shamani
,
M. H.
Yazdi
,
M. A.
Alghoul
,
A. M.
Abed
,
M. H.
Ruslan
,
S.
Mat
, and
K.
Sopian
,
Renewable Sustainable Energy Rev.
38
,
348
(
2014
).
30.
O. A.
Alawi
,
N. A. C.
Sidik
,
H. A.
Mohammed
, and
S.
Syahrullail
,
Int. Commun. Heat Mass Transfer
56
,
50
(
2014
).
31.
G.
Huminic
and
A.
Huminic
,
Renewable Sustainable Energy Rev.
16
,
5625
(
2012
).
32.
Z.
Haddad
,
C.
Abid
,
H. F.
Oztop
, and
A.
Mataoui
,
Int. J. Therm. Sci.
76
,
168
(
2014
).
33.
L.
Fedele
,
L.
Colla
, and
S.
Bobbo
,
Int. J. Refrig.
35
,
1359
(
2012
).
34.
S.
Suresh
,
K. P. P.
Venkitaraj
,
P.
Selvakumar
, and
M.
Chandrasekar
,
Exp. Therm. Fluid Sci.
38
,
54
(
2012
).
35.
S.
Suresh
,
K. P.
Venkitaraj
,
P.
Selvakumar
, and
M.
Chandrasekar
,
Colloids Surf., A
388
,
41
(
2011
).
36.
M.
Ghorbani
,
M.
Yildiz
,
D.
Gozuacik
, and
A.
Kosar
,
J. Mech. Sci. Technol.
30
,
2565
(
2016
).
37.
M.
Ghorbani
,
G.
Alcan
,
M.
Unel
,
D.
Gozuacik
,
S.
Ekici
,
H.
Uvet
,
A.
Sabanovic
, and
A.
Kosar
,
Exp. Therm. Fluid Sci.
78
,
322
(
2016
).
38.
C.
Mishra
and
Y.
Peles
,
Phys. Fluids
17
,
013601
(
2005
).
39.
G.
Chahine
,
A.
Kapahi
,
J.
Choi
, and
C.
Hsiao
,
Ultrason. Sonochem.
29
,
528
(
2016
).
40.
F.
Su
,
X.
Ma
, and
J.
Chen
, in
ASME 2009 Second International Conference on Micro/Nanoscale Heat Mass Transfer
(
2009
), pp.
425
430
.
41.
P.
Auerkari
,
Mechanical and Physical Properties of Engineering Alumina Ceramics
(
Technical Research Centre of Finland
,
1996
).
You do not currently have access to this content.