Flexible ferroelectrics being exploited as energy harvesting and conversion materials are highly desirable for wearable and skin-mountable electronic devices. As one of the most typical ferroelectric polymers, poly(vinylidene fluoride) (PVDF) has been widely used in modern electronic systems and devices, whose ferroelectric performance relies heavily on its β phase content. In this work, to achieve high-β-phase-content PVDF, we first introduced CoFe2O4 nanoparticles into PVDF. With the incorporation of CoFe2O4 nanoparticles used as an effective polymer nucleation agent, the percentage of the β phase in the PVDF has been significantly enhanced, e.g., 84% in the nanocomposite with 5 wt. % CoFe2O4 versus only 73% in the pure PVDF. In order to further increase the β phase content in PVDF, we subsequently proposed an easily realized strategy. By applying DC magnetic fields during the solution-casting process of the PVDF/CoFe2O4 nanocomposites, a further improved β phase content as high as 95% can be achieved. The further improvement of the β phase content is attributable to the tensile stress at the CoFe2O4/PVDF interfaces created by the coupling of magnetic field and CoFe2O4 by means of the magnetostriction effect. The high β-phase content makes the PVDF/CoFe2O4 nanocomposites a promising candidate for flexible and wearable electronic device applications.

1.
M.
Amjadi
,
K.
Kyung
,
I.
Park
, and
M.
Sitti
,
Adv. Funct. Mater.
26
(
11
),
1678
1698
(
2016
).
2.
F. R.
Fan
,
W.
Tang
, and
Z. L.
Wang
,
Adv. Mater.
28
(
22
),
4283
430
(
2016
).
3.
J. F.
Scott
,
Science
315
(
5814
),
954
959
(
2007
).
4.
Y.
Wada
and
R.
Hayakawa
,
Jpn. J. Appl. Phys., Part 1
15
(
11
),
2041
2057
(
1976
).
5.
E.
Fukada
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
47
(
6
),
1277
1290
(
2000
).
6.
M. G.
Broadhurst
,
G. T.
Davis
,
J. E.
McKinney
, and
R. E.
Collins
,
J. Appl. Phys.
49
(
10
),
4992
4997
(
1978
).
7.
T.
Furukawa
,
IEEE Trans. Electr. Insul.
24
(
3
),
375
394
(
1989
).
8.
S. S.
Rao
and
M.
Sunar
,
Appl. Mech. Rev.
47
(
4
),
113
123
(
1994
).
9.
D.
Zabek
,
J.
Taylor
,
E. L.
Boulbar
, and
C. R.
Bowen
,
Adv. Energy Mater.
5
,
140189
(
2015
).
10.
Q.
Wang
,
S.
Jiang
,
Y.
Zhang
,
G.
Zhang
, and
L.
Xiong
,
J. Mater. Sci. Mater. Electron.
22
,
849
(
2011
).
11.
H.
Kawai
,
Jpn. J. Appl. Phys., Part 1
8
,
975
(
1969
).
12.
J. G.
Bergman
,
J. H.
McFee
, and
G. R.
Crane
,
Appl. Phys. Lett.
18
,
203
(
1971
).
13.
V.
Strashilov
,
G.
Alexieva
,
B.
Vincent
,
V. S.
Nguyen
, and
D.
Rouxel
,
Appl. Phys. A
118
(
4
),
1469
1477
(
2015
).
14.
Y.
Yang
,
H.
Zhang
,
G.
Zhu
,
S.
Lee
,
Z. H.
Lin
, and
Z. L.
Wang
,
ACS Nano
7
(
1
),
785
790
(
2013
).
15.
G.
Zhang
,
X. S.
Zhang
,
H. B.
Huang
,
J. J.
Wang
,
Q.
Li
,
L. Q.
Chen
, and
Q.
Wang
,
Adv. Mater.
28
(
24
),
4811
4816
(
2016
).
16.
G. H.
Haertling
,
J. Am. Ceram. Soc.
82
(
4
),
797
818
(
1999
).
17.
R. M.
William
,
K.
Kanguk
,
H.
Cory
,
L. P.
Gina
, and
J. S.
Donald
,
ACS Appl. Mater. Interfaces
6
,
19504
19509
(
2014
).
18.
K.
Kim
,
W.
Zhu
,
X.
Qu
,
C.
Aaronson
,
W. R.
McCall
,
S. C.
Chen
, and
D. J.
Sirbuly
,
ACS Nano
8
(
10
),
9799
9806
(
2014
).
19.
L.
Zhu
and
Q.
Wang
,
Macromolecules
45
(
7
),
2937
2954
(
2012
).
20.
Y.
Mao
,
P.
Zhao
,
G.
McConohy
,
H.
Yang
,
Y.
Tong
, and
X.
Wang
,
Adv. Energy Mater.
4
,
1301624
(
2014
).
21.
J.
Jin
,
F.
Zhao
,
K.
Han
,
M. A.
Haque
,
L.
Dong
, and
Q.
Wang
,
Adv. Funct. Mater.
24
(
8
),
1067
1073
(
2014
).
22.
Y.
Xu
,
Ferroelectric Materials and Their Applications
(
North-Holland
,
Los Angeles
,
2013
).
23.
D.
Naegele
,
D. Y.
Yoon
, and
M. G.
Broadhurst
,
Macromolecules
11
(
6
),
1297
1298
(
1978
).
24.
A. J.
Lovinger
,
Science
220
(
4602
),
1115
1121
(
1983
).
25.
P.
Martins
,
A. C.
Lopes
, and
S.
Lanceros-Mendez
,
Prog. Polym. Sci.
39
(
4
),
683
706
(
2014
).
26.
S. B.
Lang
and
S.
Muensit
,
Appl. Phys. A
85
(
2
),
125
134
(
2006
).
27.
C.
Thirmal
,
C.
Nayek
,
P.
Murugavel
, and
V.
Subramanian
,
AIP Adv.
3
,
112109
(
2013
).
28.
Y.
Wang
,
X.
Zhou
,
Q.
Chen
,
B.
Chu
, and
Q.
Zhang
,
IEEE Trans. Dielectr. Electr. Insul.
17
(
4
),
1036
1042
(
2010
).
29.
Z. Y.
Cheng
,
H. S.
Xu
,
T.
Mai
,
M.
Chung
,
Q. M.
Zhang
, and
R. Y.
Ting
,
Proc. SPIE
4329
,
106
116
(
2011
).
30.
S.
Chen
,
K.
Yao
,
F. E. H.
Tay
, and
L. L. S.
Chew
,
J. Appl. Polym. Sci.
116
(
6
),
3331
3337
(
2010
).
31.
J. F.
Legrand
,
Ferroelectrics
91
(
1
),
303
317
(
1989
).
32.
L.
Zhu
,
J. Phys. Chem. Lett.
5
(
21
),
3677
3687
(
2014
).
33.
B.
Neese
,
B. J.
Chu
,
S. G.
Lu
,
Y.
Wang
,
E.
Furman
, and
Q. M.
Zhang
,
Science
321
(
5890
),
821
823
(
2008
).
34.
R. P.
Vijayakumar
,
V. K.
Devang
, and
M.
Ashok
,
J. Appl. Polym. Sci.
117
(
6
),
3491
3497
(
2008
).
35.
J.
Gomes
,
J. S.
Nunes
,
V.
Sencadas
, and
S.
Lanceros-Mendez
,
Smart Mater. Struct.
19
(
6
),
065010
(
2010
).
36.
P.
Martins
,
C. M.
Costa
,
G.
Botelho
,
S.
Lanceros-Mendez
,
J. M.
Barandiaran
, and
J.
Gutierrez
,
Mater. Chem. Phys.
131
(
3
),
698
705
(
2012
).
37.
H. M.
Ning
,
N.
Hu
,
T.
Kamata
,
J. H.
Qiu
,
X.
Han
,
L. M.
Zhou
,
C.
Chang
,
Y.
Liu
,
L. K.
Wu
,
J. H.
Qiu
,
H. L.
Ji
, and
W. X.
Wang
,
Smart Mater. Struct.
22
,
065011
(
2013
).
38.
Q.
Wang
and
L.
Zhu
,
J. Polym. Sci., Part B: Polym. Phys.
49
(
20
),
1421
1429
(
2011
).
39.
K. H.
Lam
and
H. L. W.
Chan
,
Compos. Sci. Technol.
65
(
7–8), 110
7
1111
(
2005
).
40.
M.
Arbatti
,
X.
Shan
, and
Z. Y.
Cheng
,
Adv. Mater.
19
(
10
),
1369
1372
(
2007
).
41.
G.
Zhang
,
Q.
Li
,
H.
Gu
,
S. L.
Jiang
,
K.
Han
,
M. R.
Gadinski
,
M. A.
Haque
,
Q. M.
Zhang
, and
Q.
Wang
,
Adv. Mater.
27
(
8
),
1450
1454
(
2015
).
42.
Q.
Li
,
G.
Zhang
,
X. S.
Zhang
,
S. L.
Jiang
,
Y. K.
Zeng
, and
Q.
Wang
,
Adv. Mater.
27
(
13
),
2236
2241
(
2015
).
43.
G.
Zhang
,
X. S.
Zhang
,
T. N.
Yang
,
Q.
Li
,
L. Q.
Chen
,
S. L.
Jiang
, and
Q.
Wang
,
ACS Nano
9
(
7
),
7164
7174
(
2015
).
44.
S. S.
Yu
,
W. T.
Zheng
,
W. X.
Yu
,
Y. J.
Zhang
,
Q.
Jiang
, and
Z. D.
Zhao
,
Macromolecules
42
(
22
),
8870
8874
(
2009
).
45.
S.
Bodkhe
,
P. S. M.
Rajesh
,
S.
Kamle
, and
V.
Verma
,
J. Polym. Res.
21
(
434
),
434
445
(
2014
).
46.
P.
Martins
,
C. M.
Costa
,
M.
Benelmekki
,
G.
Botelho
, and
S.
Lanceros-Mendez
,
CrystEngComm
14
,
2807
2811
(
2012
).
47.
J. S.
Andrew
and
D. R.
Clarke
,
Langmuir
24
(
16
),
8435
8438
(
2008
).
48.
S.
Garain
,
T. K.
Sinha
,
P.
Adhikary
,
K.
Henkel
,
S.
Sen
,
S.
Ram
, and
C.
Sinha
,
ACS Appl. Mater. Interfaces
7
(
2
),
1298
1307
(
2015
).
49.
Y. X.
Zheng
,
Q. Q.
Cao
,
C. L.
Zhang
,
H. C.
Xuan
,
L. Y.
Wang
,
D. H.
Wang
, and
Y. W.
Du
,
J. Appl. Phys.
110
,
043908
(
2011
).
50.
A.
Muhammad
,
R.
Sato-Turtelli
,
M.
Kriegisch
,
R.
Grössinger
, and
F.
Kubel
,
J. Appl. Phys.
111
,
013918
(
2012
).
51.
M. E.
Achaby
,
F.-E.
Arrakhiz
,
S.
Vaudreuil
,
E. M.
Essassi
,
A.
Qaiss
, and
M.
Bousmina
,
Polym. Eng. Sci.
53
(
1
),
33
43
(
2013
).
52.
G. H.
Kim
,
S. M.
Hong
, and
Y.
Seo
,
Phys. Chem. Chem. Phys.
11
,
10506
10512
(
2009
).
You do not currently have access to this content.