The Acoustic Black Hole (ABH) effect takes place in thin-walled structures with diminishing thickness as a result of the reduction in the bending wave speed. It was shown to exist as a broadband phenomenon, based on wave propagation theory in structures of semi-infinite size. The ABH effect exhibits appealing features for various applications, such as passive vibration control, energy harvesting, and sound radiation control. In this paper, we demonstrate the disappearance of the ABH effect in a finite beam at specific frequency ranges above the cut-on frequency, both experimentally and theoretically. Analyses show that the phenomenon takes place at frequencies which are close to the low order local resonant frequencies of the portion of the beam demarcated by the position of the excitation force. These frequencies can be predicted so that the phenomenon can be avoided for the targeted frequency ranges in ABH applications.

1.
B.
Horstman
,
B.
Reznik
,
S.
Fagnocchi
, and
J. I.
Cirac
,
Phys. Rev. Lett.
104
,
250403
(
2010
).
2.
I.
Carusotto
,
S.
Fagnocchi
,
A.
Recati
,
R.
Balbinot
, and
A.
Fabbri
,
New J. Phys.
10
,
103001
(
2008
).
3.
O.
Lahav
,
A.
Itah
,
A.
Blumkin
,
C.
Gordon
,
S.
Rinott
,
A.
Zayats
, and
J.
Steinhauer
,
Phys. Rev. Lett.
105
,
240401
(
2010
).
4.
M. A.
Mironov
,
Sov. Phys. - Acoust.
34
,
318
(
1988
).
5.
V. V.
Krylov
and
F. J. B. S.
Tilman
,
J. Sound Vib.
274
,
605
(
2004
).
6.
E. E.
Narimanov
and
A. V.
Kildishev
,
Appl. Phys. Lett.
95
,
041106
(
2009
).
7.
V. V.
Krylov
,
Acta Acust. United Acust.
90
,
830
(
2004
).
8.
D. J.
O'Boy
and
V. V.
Krylov
,
J. Sound Vib.
330
,
2220
(
2011
).
9.
V. B.
Georgiev
,
J.
Cuenca
,
F.
Gautier
,
L.
Simon
, and
V. V.
Krylov
,
J. Sound Vib.
330
,
2497
(
2011
).
10.
V. V.
Krylov
and
R. E. T. B.
Winward
,
J. Sound Vib.
300
,
43
(
2007
).
11.
D. J.
O'Boy
,
E. P.
Bowyer
, and
V. V.
Krylov
,
J. Acoust. Soc. Am.
129
,
3475
(
2011
).
12.
E. P.
Bowyer
,
D. J.
O'Boy
,
V. V.
Krylov
, and
J. L.
Horner
,
Appl. Acoust.
73
,
514
(
2012
).
13.
V.
Denis
,
A.
Pelat
, and
F.
Gautier
,
J. Sound Vib.
362
,
56
(
2016
).
14.
J. J.
Bayod
,
J. Vib. Acoust.
133
,
061003
(
2011
).
15.
E. P.
Bowyer
and
V. V.
Krylov
,
Compos. Struct.
107
,
406
(
2014
).
16.
L. X.
Zhao
,
S. C.
Conlon
, and
F.
Semperlotti
,
Smart Mater. Struct.
23
,
065021
(
2014
).
17.
L. X.
Zhao
,
S. C.
Conlon
, and
F.
Semperlotti
,
Smart Mater. Struct.
24
,
065039
(
2015
).
18.
E. P.
Bowyer
and
V. V.
Krylov
,
Appl. Acoust.
88
,
30
(
2015
).
19.
S. C.
Conlon
and
J. B.
Fahnline
,
J. Acoust. Soc. Am.
137
,
447
(
2015
).
20.
H. F.
Zhu
and
F.
Semperlotti
,
Phys. Rev. B
91
,
104304
(
2015
).
21.
O.
Aklouche
,
A.
Pelat
,
S.
Maugeais
, and
F.
Gautier
,
J. Sound Vib.
375
,
38
(
2016
).
22.
V. V.
Krylov
,
Sov. Phys. - Tech. Phys.
35
,
137
(
1990
).
23.
P. A.
Feurtado
and
S. C.
Conlon
,
J. Acoust. Soc. Am.
136
,
EL148
(
2014
).
24.
D. J.
O'Boy
and
V. V.
Krylov
,
Appl. Acoust.
104
,
24
(
2016
).
25.
L. L.
Tang
,
L.
Cheng
,
H. L.
Ji
, and
J. H.
Qiu
,
J. Sound Vib.
374
,
172
(
2016
).
26.
T.
Hou
and
H.
Qin
,
Graphical Models
74
,
221
(
2012
).
27.
S. S.
Rao
and
F. F.
Yap
,
Mechanical Vibrations
(
Addison Wesley
,
Massachusetts
,
1995
), pp.
439
444
.
You do not currently have access to this content.