Conventional acoustic absorbers are used to have a structure with a thickness comparable to the working wavelength, resulting in major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in an extremely low frequency region. The metasurface possessing a deep subwavelength thickness down to a feature size of λ/223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have an high impact on amount of applications due to the extremely thin thickness, easy fabrication, and high efficiency of the proposed structure.

1.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity (Course of Theoretical Physics)
, 3rd ed. (
Butterworth-Heinemann
,
1986
), Vol.
7
.
2.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N. H.
Chan
, and
P.
Sheng
,
Phys. Rev. Lett.
101
,
204301
(
2008
).
3.
S. H.
Lee
,
C. M.
Park
,
Y. M.
Seo
,
Z. G.
Wang
, and
C. K.
Kim
,
Phys. Rev. Lett.
104
,
054301
(
2010
).
4.
C. M.
Park
,
J. J.
Park
,
S. H.
Lee
,
Y. M.
Seo
,
C. K.
Kim
, and
S. H.
Lee
,
Phys. Rev. Lett.
107
,
194301
(
2011
).
5.
G.
Ma
,
M.
Yang
,
S.
Xiao
,
Z.
Yang
, and
P.
Sheng
,
Nat. Mater.
13
,
873
(
2014
).
6.
M.
Yang
,
C.
Meng
,
C.
Fu
,
Y.
Li
,
Z.
Yang
, and
P.
Sheng
,
Appl. Phys. Lett.
107
,
104104
(
2015
).
7.
M.
Yang
,
Y.
Li
,
C.
Meng
,
C.
Fu
,
J.
Mei
,
Z.
Yang
, and
P.
Sheng
,
C. R. Méc.
343
,
635
(
2015
).
8.
J. Z.
Song
,
P.
Bai
,
Z. H.
Hang
, and
Y.
Lai
,
New J. Phys.
16
,
033026
(
2014
).
9.
P.
Wei
,
C.
Croënne
,
S. T.
Chu
, and
J.
Li
,
Appl. Phys. Lett.
104
,
121902
(
2014
).
10.
D. Y.
Maa
,
J. Acoust. Soc. Am.
104
,
2861
(
1998
).
11.
Z.
Liang
and
J.
Li
,
Phys. Rev. Lett.
108
,
114301
(
2012
).
12.
Z.
Liang
,
T.
Feng
,
S.
Lok
,
F.
Liu
,
K. B.
Ng
,
C. H.
Chan
,
J.
Wang
,
S.
Han
,
S.
Lee
, and
J.
Li
,
Sci. Rep.
3
,
1614
(
2013
).
13.
Y.
Li
,
B.
Liang
,
X.
Tao
,
X. F.
Zhu
,
X. Y.
Zou
, and
J. C.
Cheng
,
Appl. Phys. Lett.
101
,
233508
(
2012
).
14.
Y.
Li
,
G. K.
Yu
,
B.
Liang
,
X. Y.
Zou
,
G. Y.
Li
,
S.
Cheng
, and
J. C.
Cheng
,
Sci. Rep.
4
,
6830
(
2014
).
15.
Y.
Xie
,
B. I.
Popa
,
L.
Zigoneanu
, and
S. A.
Cummer
,
Phys. Rev. Lett.
110
,
175501
(
2013
).
16.
Y.
Li
,
B.
Liang
,
Z. M.
Gu
,
X. Y.
Zou
, and
J. C.
Cheng
,
Appl. Phys. Lett.
103
,
053505
(
2013
).
17.
Y.
Li
,
B.
Liang
,
X. Y.
Zou
, and
J. C.
Cheng
,
Appl. Phys. Lett.
103
,
063509
(
2013
).
18.
T.
Frenzel
,
J. D.
Brehm
,
T.
Buckmann
,
R.
Schittny
,
M.
Kadic
, and
M.
Wegener
,
Appl. Phys. Lett.
103
,
061907
(
2013
).
19.
Y.
Li
,
B.
Liang
,
Z. M.
Gu
,
X. Y.
Zou
, and
J. C.
Cheng
,
Sci. Rep.
3
,
2546
(
2013
).
20.
Y.
Li
,
X.
Jiang
,
R. Q.
Li
,
B.
Liang
,
X. Y.
Zou
,
L. L.
Yin
, and
J. C.
Cheng
,
Phys. Rev. Appl.
2
,
064002
(
2014
).
21.
Y.
Xie
,
W.
Wang
,
H.
Chen
,
A.
Konneker
,
B. I.
Popa
, and
S. A.
Cummer
,
Nat. Commun.
5
,
5553
(
2014
).
22.
K.
Tang
,
C.
Qiu
,
M.
Ke
,
J.
Lu
,
Y.
Ye
, and
Z.
Liu
,
Sci. Rep.
4
,
6517
(
2014
).
23.
Y.
Li
,
X.
Jiang
,
B.
Liang
,
C.
Jian-Chun
, and
L. K.
Zhang
,
Phys. Rev. Appl.
4
,
024003
(
2015
).
24.
Y.
Li
and
M. B.
Assouar
,
Sci. Rep.
5
,
17612
(
2015
).
25.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton
,
1987
).
26.

In our design, d3.5cm approximates17.7dv at 125.8 Hz so that the viscous effect should be considered in the perforated hole.

27.
X.
Cai
,
Q.
Guo
,
G.
Hu
, and
J.
Yang
,
Appl. Phys. Lett.
105
,
121901
(
2014
).
28.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
,
Nat. Commun.
3
,
756
(
2012
).
29.
J.
Christensen
,
V.
Romero-García
,
R.
Picó
,
A.
Cebrecos
,
F. J.
García de Abajo
,
N. A.
Mortensen
,
M.
Willatzen
, and
V. J.
Sánchez-Morcillo
,
Sci. Rep.
4
,
4674
(
2014
).
You do not currently have access to this content.