The development of a precise micromachining process for Ge1–xSnx has the potential to enable both the fabrication and optimization of Ge1−xSnx-based devices in photonics and microelectromechanical systems. We demonstrate a digital etching scheme for Ge0.922Sn0.078 based on a two-stage, highly selective CF4 plasma dry etch and HCl wet etch. Using X-Ray Reflectivity, we show consistent etch control as low as 1.5 nm per cycle, which is defined as one dry etch step followed by one wet etch step. The etch rate increases to 3.2 nm per cycle for a longer dry etch time due to physical sputtering contributions, accompanied by an increase in RMS surface roughness. By operating within a regime with minimal sputtering, we demonstrate that good digital etch depth control and surface quality can be achieved using this technique.

1.
S.
Gupta
,
B.
Magyari-Köpe
,
Y.
Nishi
, and
K. C.
Saraswat
,
J. Appl. Phys.
113
,
073707
(
2013
).
2.
R.
Chen
,
H.
Lin
,
Y.
Huo
,
C.
Hitzman
,
T. I.
Kamins
, and
J. S.
Harris
,
Appl. Phys. Lett.
99
,
181125
(
2011
).
3.
S.
Wirths
,
R.
Geiger
,
N.
von den Driesch
,
G.
Mussler
,
T.
Stoica
,
S.
Mantl
,
Z.
Ikonic
,
M.
Luysberg
,
S.
Chiussi
,
J. M.
Hartmann
,
H.
Sigg
,
J.
Faist
,
D.
Buca
, and
D.
Grützmacher
,
Nat. Photonics
9
,
88
(
2015
).
4.
K.
Hennessy
,
A.
Badolato
,
A.
Tamboli
,
P. M.
Petroff
,
E.
Hu
,
M.
Atatüre
,
J.
Dreiser
, and
A.
Imamoğlu
,
Appl. Phys. Lett.
87
,
021108
(
2005
).
5.
T.
Sünner
,
R.
Herrmann
,
A.
Löffler
,
M.
Kamp
, and
A.
Forchel
,
Microelectron. Eng.
84
,
1405
(
2007
).
6.
D.
Buttari
,
S.
Heikman
,
S.
Keller
, and
U. K.
Mishra
, in
IEEE Lester Eastman Conference on High Performance Devices
(
2002
), pp.
461
469
.
7.
X.
Cao
and
I.
Thayne
,
Microelectron. Eng.
67–68
,
333
(
2003
).
8.
S.
Lee
,
C.-Y.
Huang
,
A. D.
Carter
,
J. J. M.
Law
,
D. C.
Elias
,
B. J.
Thibeault
,
W.
Mitchell
,
S.
Stemmer
,
A. C.
Gossard
, and
M. J. W.
Rodwell
, in
Conference Proceedings of Indium Phosphate
(
2013
), Vol.
1
, pp.
7
8
.
9.
G. C.
DeSalvo
,
C. A.
Bozada
,
J. L.
Ebel
,
D. C.
Look
,
J. P.
Barrette
,
C. L.
Cerny
,
R. W.
Dettmer
,
J. K.
Gillespie
,
C. K.
Havasy
,
T. J.
Jenkins
,
K.
Nakano
,
C. I.
Pettiford
,
T. K.
Quach
,
J. S.
Sewell
, and
G. D.
Via
,
J. Electrochem. Soc.
143
,
3652
(
1996
).
10.
T.
Meguro
,
M.
Hamagaki
,
S.
Modaressi
,
T.
Hara
,
Y.
Aoyagi
,
M.
Ishii
, and
Y.
Yamamoto
,
Appl. Phys. Lett.
56
,
1552
(
1990
).
11.
J.
Lin
,
X.
Zhao
,
D. A.
Antoniadis
, and
J. A.
del Alamo
,
IEEE Electron Device Lett.
35
,
440
(
2014
).
12.
H.
Sakaue
,
S.
Iseda
,
K.
Asami
,
J.
Yamamoto
,
M.
Hirose
, and
Y.
Horiike
,
Jpn. J. Appl. Phys., Part 1
29
,
2648
(
1990
).
13.
J.
Yamamoto
,
T.
Kawasaki
,
H.
Sakaue
,
S.
Shingubara
, and
Y.
Horiike
,
Thin Solid Films
225
,
124
(
1993
).
14.
T.
Matsuura
,
J.
Murota
,
Y.
Sawada
, and
T.
Ohmi
,
Appl. Phys. Lett.
63
,
2803
(
1993
).
15.
K.
Suzue
,
T.
Matsuura
,
J.
Murota
,
Y.
Sawada
, and
T.
Ohmi
,
Appl. Surf. Sci.
82–83
,
422
(
1994
).
16.
K. J.
Kanarik
,
S.
Tan
,
J.
Holland
,
A.
Eppler
,
V.
Vahedi
,
J.
Marks
, and
R. A.
Gottscho
,
Solid State Technol.
56
,
14
(
2013
).
17.
S.
Imai
,
T.
Haga
,
O.
Matsuzaki
,
T.
Hattori
, and
M.
Matsumura
,
Jpn. J. Appl. Phys., Part 1
34
,
5049
(
1995
).
18.
K.
Ikeda
,
S.
Imai
, and
M.
Matsumura
,
Appl. Surf. Sci.
112
,
87
(
1997
).
19.
D.
Choi
,
Y.
Ge
,
J. S.
Harris
,
J.
Cagnon
, and
S.
Stemmer
,
J. Cryst. Growth
310
,
4273
(
2008
).
20.
Y.
Dong
,
D.
Lei
,
X.
Xu
,
W.
Wang
, and
Y.-C.
Yeo
, in
International Silicon-Germanium Technology and Device Meeting
(
2014
),
pp.
99
100
.
21.
S.
Gupta
,
R.
Chen
,
Y.-C.
Huang
,
Y.
Kim
,
E.
Sanchez
,
J. S.
Harris
, and
K. C.
Saraswat
,
Nano Lett.
13
,
3783
(
2013
).
You do not currently have access to this content.