Useful dielectric properties for high-temperature ceramic capacitors are demonstrated in a non-perovskite oxide, Ca(Ti0.85 Zr0.15)SiO5, which is mainly composed of one-dimensional chains of oxygen octahedra that are mutually linked by SiO4 tetrahedra. Its dielectric constant and low temperature coefficient of capacitance were found to be 43 and −102 ppm/K, respectively, over the wide temperature range of 300–780 K. The high insulating performance was also indicated by the high resistivity, exceeding 1011 Ω cm up to 523 K. The systematic dielectric measurements for Ca(Ti1−x Zrx)SiO5 as functions of the composition and temperature indicate that the suppression of the anti-ferroelectric phase transition of CaTiSiO5 by Zr4+-substitution is a key to improve the temperature-stability and the high-resistivity in Ca(Ti1−x Zrx)SiO5. The present results shed light on the development of a designing principle for ceramic capacitors for the high-temperature use.

1.
A.
Lewandowski
and
M.
Galinski
,
J. Phys. Chem. Solids
65
,
281
(
2004
).
2.
P. F.
Ribeiro
,
B. K.
Johnson
,
M. L.
Crow
,
A.
Arsoy
, and
Y.
Liu
,
Proc. IEEE
89
,
1744
(
2001
).
3.
D. H.
Choi
,
A.
Baker
,
M.
Lanagan
,
S.
Trolier-McKinstry
, and
C.
Randall
,
J. Am. Ceram. Soc.
96
,
2197
(
2013
).
4.
H.
Ogihara
,
C. A.
Randall
, and
S.
Trolier-McKinstry
,
J. Am. Ceram. Soc.
92
,
1719
(
2009
).
5.
N.
Raengthon
and
D. P.
Cann
,
J. Am. Ceram. Soc.
95
,
1604
(
2012
).
6.
G. A.
Smolenskii
and
K. I.
Rozgachev
,
Zh. Tekh. Fiz.
24
,
1751
(
1954
).
7.
C. S.
Chiang
,
W.-H.
Lee
,
H. J.
Yang
, and
Y.-C.
Lee
,
Ferroelectrics
435
,
110
(
2012
).
8.
P. J.
Harrop
,
J. Mater. Sci.
4
,
370
(
1969
).
9.
A. G.
Cocbain
and
P. J.
Harrop
,
J. Phys. D
1
,
1109
(
1968
).
10.
J. B.
Lim
,
S.
Zhang
,
N.
Kim
, and
T. R.
Shrout
,
J. Am. Ceram. Soc.
92
,
679
(
2009
).
11.
R.
Dittmer
,
W.
Jo
,
D.
Damjanovic
, and
J.
Rödel
,
J. Appl. Phys.
109
,
034107
(
2011
).
12.
S.
Zhang
,
R.
Zia
, and
T. R.
Shrout
,
Appl. Phys. Lett.
91
,
132913
(
2007
).
13.
M.
Dou
and
C.
Persson
,
J. Appl. Phys.
113
,
083703
(
2013
).
14.
X.
Zhao
and
D.
Vanderbilt
,
Phys. Rev. B.
65
,
233106
(
2002
).
15.
S.
Clima
,
G.
Pourtois
,
A.
Hardy
,
S.
Van Elshocht
,
M. K.
Van Bael
,
S. D.
Gendt
,
D. J.
Wouters
,
M.
Heyns
, and
J. A.
Kittl
,
J. Electrochem. Soc.
157
,
G20
(
2010
).
16.
X.
Zhao
and
D.
Vanderbilt
,
Phys. Rev. B
65
,
075105
(
2002
).
17.
S.
Ghose
,
Y.
Ito
, and
D. M.
Hatch
,
Phys. Chem. Miner.
17
,
591
(
1991
).
18.
M.
Zhang
,
E. K. H.
Salje
,
U.
Bismayer
,
H.-G.
Unruh
,
B.
Wruck
, and
C.
Schmidt
,
Phys. Chem. Miner.
22
,
41
(
1995
).
19.
I.
Tanaka
,
T.
Obuchi
, and
H.
Kojima
,
J. Cryst. Growth
87
,
169
(
1988
).
20.
R. P.
Liferovich
and
R. H.
Mitchell
,
Phys. Chem. Miner.
32
,
40
(
2005
).
22.
R. A.
Grigoryan
and
L. A.
Grygoryan
,
Inorg. Mater.
47
,
417
419
(
2011
).
23.
C.
Sun
,
X.
Wang
,
A.
Ji
, and
L.
Li
,
Jpn. J. Appl. Phys., Part 1
50
,
081501
(
2011
).
24.
W. J.
Lee
,
A.
Wakahara
, and
B. H.
Kim
,
Cream. Inter.
31
,
521
(
2005
).
25.
S.
Marinel
,
M.
Pollet
, and
G.
Desgardin
,
J. Mater. Sci.: Mater. Electron.
13
,
149
(
2002
).
26.
M.
Pollet
,
S.
Marinel
, and
G.
Desgardin
,
J. Eur. Ceram. Soc.
24
,
119
(
2004
).
27.
A.
Tempeton
,
X.
Wang
,
S. J.
Penn
,
S. J.
Webb
,
L. F.
Cohen
, and
N. M.
Alford
,
J. Am. Ceram. Soc.
83
,
95
(
2000
).
28.
A.
Halliyal
,
A. S.
Bhalla
,
L. E.
Cross
, and
R. E.
Newnham
,
J. Mater. Sci.
20
,
3745
(
1985
).
29.
S. K.
Barbar
and
M.
Roy
,
J. Am. Ceram. Soc.
94
,
843
(
2011
).
30.
I.
Levin
,
T. G.
Amos
,
S. M.
Bell
,
L.
Farber
,
T. A.
Vanderah
,
R. S.
Roth
, and
B. H.
Toby
,
J. Solid State Chem.
175
,
170
(
2003
).
31.
R. J.
Cava
,
W. F.
Peck
, Jr.
,
J. J.
Krajewski
,
G. L.
Roberts
,
B. P.
Barber
,
H. M.
O'Bryan
, and
P. L.
Gammel
,
Appl. Phys. Lett.
70
,
1396
(
1997
).
32.
N.
Oji
,
T.
Kojima
,
A.
Sato
,
S.
Sato
, and
T.
Nomura
,
J. Soc. Mater. Eng. Res. Jpn.
2
,
37
(
1998
) [in Japanese].
You do not currently have access to this content.