Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE11 mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

1.
K. Y.
Bliokh
,
A. Y.
Bekshaev
, and
F.
Nori
, “
Extraordinary momentum and spin in evanescent waves
,”
Nat. Commun.
5
,
3300
(
2014
).
2.
K. Y.
Bliokh
and
F.
Nori
, “
Transverse spin of a surface polariton
,”
Phys. Rev. A
85
,
061801
(
2012
).
3.
T.
Van Mechelen
and
Z.
Jacob
, “
Universal spin-momentum locking of evanescent waves
,”
Optica
3
,
118
(
2016
).
4.
F. L.
Kien
and
A.
Rauschenbeutel
, “
Negative azimuthal force of nanofiber-guided light on a particle
,”
Phys. Rev. A
88
,
063845
(
2013
).
5.
K. Y.
Bliokh
,
D.
Smirnova
, and
F.
Nori
, “
Quantum spin Hall effect of light
,”
Science
348
,
1448
1451
(
2015
).
6.
A.
Aiello
,
N.
Lindlein
,
C.
Marquardt
, and
G.
Leuchs
, “
Transverse angular momentum and geometric spin hall effect of light
,”
Phys. Rev. Lett.
103
,
100401
(
2009
).
7.
F. J.
Rodrguez-Fortuo
,
G.
Marino
,
P.
Ginzburg
,
D.
OConnor
,
A.
Martnez
,
G. A.
Wurtz
, and
A. V.
Zayats
, “
Near-field interference for the unidirectional excitation of electromagnetic guided modes
,”
Science
340
,
328
330
(
2013
).
8.
P. V.
Kapitanova
,
P.
Ginzburg
,
F. J.
Rodrguez-Fortuo
,
D. S.
Filonov
,
P. M.
Voroshilov
,
P. A.
Belov
,
A. N.
Poddubny
,
Y. S.
Kivshar
,
G. A.
Wurtz
, and
A. V.
Zayats
, “
Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes
,”
Nat. Commun.
5
,
3226
(
2014
).
9.
R.
Mitsch
,
C.
Sayrin
,
B.
Albrecht
,
P.
Schneeweiss
, and
A.
Rauschenbeutel
, “
Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide
,”
Nat. Commun.
5
,
5713
(
2014
).
10.
J.
Petersen
,
J.
Volz
, and
A.
Rauschenbeutel
, “
Chiral nanophotonic waveguide interface based on spin-orbit interaction of light
,”
Science
346
,
67
71
(
2014
).
11.
B.
le Feber
,
N.
Rotenberg
, and
L.
Kuipers
, “
Nanophotonic control of circular dipole emission
,”
Nat. Commun.
6
,
6695
(
2015
).
12.
I.
Sllner
,
S.
Mahmoodian
,
S. L.
Hansen
,
L.
Midolo
,
A.
Javadi
,
G.
Kiransk
,
T.
Pregnolato
,
H.
El-Ella
,
E. H.
Lee
,
J. D.
Song
,
S.
Stobbe
, and
P.
Lodahl
, “
Deterministic photonemitter coupling in chiral photonic circuits
,”
Nat. Nanotechnol.
10
,
775
778
(
2015
).
13.
A.
Young
,
A.
Thijssen
,
D.
Beggs
,
P.
Androvitsaneas
,
L.
Kuipers
,
J.
Rarity
,
S.
Hughes
, and
R.
Oulton
, “
Polarization engineering in photonic crystal waveguides for spin-photon entanglers
,”
Phys. Rev. Lett.
115
,
153901
(
2015
).
14.
A.
Aiello
and
P.
Banzer
, “
Transverse spin of light for all wavefields
,” e-print arXiv:1502.05350.
15.
S.
Scheel
,
S. Y.
Buhmann
,
C.
Clausen
, and
P.
Schneeweiss
, “
Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber
,”
Phys. Rev. A
92
,
043819
(
2015
).
16.
M. H.
Alizadeh
and
B. M.
Reinhard
, “
Transverse chiral optical forces by chiral surface plasmon polaritons
,”
ACS Photonics
2
,
1780
1788
(
2015
).
17.
A.
Ashkin
, “
Acceleration and trapping of particles by radiation pressure
,”
Phys. Rev. Lett.
24
,
156
159
(
1970
).
18.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
, “
Observation of a single-beam gradient force optical trap for dielectric particles
,”
Opt. Lett.
11
,
288
(
1986
).
19.
S. B.
Wang
and
C. T.
Chan
, “
Lateral optical force on chiral particles near a surface
,”
Nat. Commun.
5
,
3307
(
2014
).
20.
A.
Hayat
,
J. P. B.
Mueller
, and
F.
Capasso
, “
Lateral chirality-sorting optical forces
,”
Proc. Natl. Acad. Sci.
112
,
13190
13194
(
2015
).
21.
R. P.
Cameron
,
S. M.
Barnett
, and
A. M.
Yao
, “
Discriminatory optical force for chiral molecules
,”
New J. Phys.
16
(
1
),
013020
(
2014
).
22.
F. J.
Rodrguez-Fortuo
,
N.
Engheta
,
A.
Martnez
, and
A. V.
Zayats
, “
Lateral forces on circularly polarizable particles near a surface
,”
Nat. Commun.
6
,
8799
(
2015
).
23.
M. V.
Berry
, “
Optical currents
,”
J. Opt. A
11
(
9
),
094001
(
2009
).
24.
M.
Neugebauer
,
T.
Bauer
,
A.
Aiello
, and
P.
Banzer
, “
Measuring the transverse spin density of light
,”
Phys. Rev. Lett.
114
,
063901
(
2015
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4941539 for full expressions and explanations.
26.
T.
Setl
,
A.
Shevchenko
,
M.
Kaivola
, and
A. T.
Friberg
, “
Degree of polarization for optical near fields
,”
Phys. Rev. E
66
,
016615
(
2002
).
27.
A. Y.
Bekshaev
and
M. S.
Soskin
, “
Transverse energy flows in vectorial fields of paraxial beams with singularities
,”
Opt. Commun.
271
,
332
348
(
2007
).
28.
G. P.
Agrawal
,
Fiber-Optic Communication Systems
, 3rd ed. (
Wiley-Interscience
,
New York
,
2002
).

Supplementary Material

You do not currently have access to this content.