A mechanism for the nucleation of a-type threading dislocation half-loops from basal stacking faults in wurtzite III-nitride heterostructures is presented. Transmission electron microscopy observations, in conjunction with topological and strain analysis, show that there are two possible configurations of closed domains comprising basal stacking faults of I1 type. It is shown that the lattice dislocation may emanate when the sphalerite structural units of the stacking faults in the closed domain are oriented in a parallel manner. The closed domain configurations do not introduce any shift on the basal planes, resulting in zero defect content along the growth direction. The stacking fault domains are hexagonal, with sides along the ⟨101¯0⟩ directions, and the threading dislocation half loops nucleate at the line nodes. The mechanism was found to be operational in multiple III-nitride systems.

1.
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
27
,
118
(
1974
).
2.
Y.
Taniyasu
,
M.
Kasu
, and
T.
Makimoto
,
J. Cryst. Growth
298
,
310
(
2007
).
3.
T. D.
Moustakas
,
Phys. Status Solidi A
210
,
169
(
2013
).
4.
B.
Jahnen
,
M.
Albrecht
,
W.
Dorsch
,
S.
Christiansen
,
H. P.
Strunk
,
D.
Hanser
, and
R. F.
Davis
,
MRS Internet J. Nitride Semicond. Res.
3
,
39
(
1998
).
5.
P. F.
Yan
,
K.
Du
, and
M. L.
Sui
,
J. Appl. Phys.
112
,
083502
(
2012
).
6.
J. A.
Floro
,
D. M.
Follstaedt
,
P.
Provencio
,
S. J.
Hearne
, and
S. R.
Lee
,
J. Appl. Phys.
96
,
7087
(
2004
).
7.
T.
Kehagias
,
P.
Komninou
,
G.
Nouet
,
P.
Ruterana
, and
T.
Karakostas
,
Phys. Rev. B
64
,
195329
(
2001
).
8.
R.
Liu
,
J.
Mei
,
S.
Srinivasan
,
H.
Omiya
,
F. A.
Ponce
,
D.
Cherns
,
Y.
Narukawa
, and
T.
Mukai
,
Jpn. J. Appl. Phys., Part 2
45
,
L549
(
2006
).
9.
C.
Bazioti
,
E.
Papadomanolaki
,
T.
Kehagias
,
T.
Walther
,
J.
Smalc-Koziorowska
,
E.
Pavlidou
,
P.
Komninou
,
T.
Karakostas
,
E.
Iliopoulos
, and
G. P.
Dimitrakopulos
,
J. Appl. Phys.
118
,
155301
(
2015
).
10.
V.
Narayanan
,
K.
Lorenz
,
W.
Kim
, and
S.
Mahajan
,
Appl. Phys. Lett.
78
,
1544
(
2001
).
11.
F. Y.
Meng
,
H.
McFelea
,
R.
Datta
,
U.
Chowdhury
,
C.
Werkhoven
,
C.
Arena
, and
S.
Mahajan
,
J. Appl. Phys.
110
,
073503
(
2011
).
12.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
Krieger Publishing Company
,
1982
).
13.
C.
Stampfl
and
C. G.
Van de Walle
,
Phys. Rev. B
57
,
R15052
(
1998
).
14.
S. L.
Sahonta
,
P.
Komninou
,
G. P.
Dimitrakopulos
,
T.
Kehagias
,
J.
Kioseoglou
,
T.
Karakostas
,
C.
Salcianu
, and
E. J.
Thrush
,
J. Phys.: Conf. Ser.
126
,
012048
(
2008
).
15.
Y.
Kotsar
,
B.
Doisneau
,
E.
Bellet-Amalric
,
A.
Das
,
E.
Sarigiannidou
, and
E.
Monroy
,
J. Appl. Phys.
110
,
033501
(
2011
).
16.
H. K.
Cho
,
J. Y.
Lee
,
C. S.
Kim
,
G. M.
Yang
,
N.
Sharma
, and
C.
Humphreys
,
J. Cryst. Growth
231
,
466
(
2001
).
17.
F. Y.
Meng
,
M.
Rao
,
N.
Newman
, and
S.
Mahajan
,
Acta Mater.
56
,
5552
(
2008
).
18.
H. K.
Cho
and
G. M.
Yang
,
J. Cryst. Growth
243
,
124
(
2002
).
19.
H. K.
Cho
,
J. Y.
Lee
,
K. S.
Kim
, and
G. M.
Yang
,
J. Cryst. Growth
220
,
197
(
2000
).
20.
Z.
Liliental-Weber
,
K. M.
Yu
,
M.
Hawkridge
,
S.
Bedair
,
A. E.
Berman
,
A.
Emara
,
D. R.
Khanal
,
J.
Wu
,
J.
Domagala
, and
J.
Bak-Misiuk
,
Phys. Status Solidi C
6
,
2626
(
2009
).
21.
P.
Perlin
,
L.
Marona
,
K.
Holc
,
P.
Wisniewski
,
T.
Suski
,
M.
Leszczynski
,
R.
Czernecki
,
S.
Najda
,
M.
Zajac
, and
R.
Kucharski
,
Appl. Phys. Express
4
,
062103
(
2011
).
22.
R.
Czernecki
,
S.
Kret
,
P.
Kempisty
,
E.
Grzanka
,
J.
Plesiewicz
,
G.
Targowski
,
S.
Grzanka
,
M.
Bilska
,
J.
Smalc-Koziorowska
,
S.
Krukowski
,
T.
Suski
,
P.
Perlin
, and
M.
Leszczynski
,
J. Cryst. Growth
402
,
330
(
2014
).
23.
C.
Skierbiszewski
,
M.
Siekacz
,
H.
Turski
,
G.
Muzioł
,
M.
Sawicka
,
A.
Feduniewicz-Żmuda
,
J.
Smalc-Koziorowska
,
P.
Perlin
,
S.
Grzanka
,
Z. R.
Wasilewski
,
R.
Kucharski
, and
S.
Porowski
,
J. Vac. Sci. Technol., B
30
,
02B102
(
2012
).
24.
C.
Skierbiszewski
,
H.
Turski
,
G.
Muziol
,
M.
Siekacz
,
M.
Sawicka
,
G.
Cywinski
,
Z. R.
Wasilewski
, and
S.
Porowski
,
J. Phys. D: Appl. Phys.
47
,
073001
(
2014
).
25.
E.
Iliopoulos
,
A.
Georgakilas
,
E.
Dimakis
,
A.
Adikimenakis
,
K.
Tsagaraki
,
M.
Androulidaki
, and
N. T.
Pelekanos
,
Phys. Status Solidi A
203
,
102
(
2006
).
26.
M. J.
Hÿtch
,
E.
Snoeck
, and
R.
Kilaas
,
Ultramicroscopy
74
,
131
(
1998
).
27.
M. J.
Hÿtch
,
J. L.
Putaux
, and
J. M.
Penisson
,
Nature
423
,
270
(
2003
).
28.
R. C.
Pond
and
J. P.
Hirth
,
Solid State Phys.
47
,
287
(
1994
).
29.
G. P.
Dimitrakopulos
,
P.
Komninou
, and
R. C.
Pond
,
Phys. Status Solidi B
227
,
45
(
2001
).
30.
The phase is defined as Pg= −2πg.u, where g is the reciprocal lattice vector and u is the lattice displacement. This reduces to Pg= −2π(ug/dg) where ug is the magnitude of the projected displacement along the g vector and dg the corresponding lattice spacing.
31.
D. N.
Zakharov
,
Z.
Liliental-Weber
,
B.
Wagner
,
Z. J.
Reitmeier
,
E. A.
Preble
, and
R. F.
Davis
,
Phys. Rev. B
71
,
235334
(
2005
).
32.
H.
Blank
,
P.
Delavignette
,
R.
Gevers
, and
S.
Amelinckx
,
Phys. Status Solidi B
7
,
747
(
1964
).
33.
34.
H.
Chen
,
R. M.
Feenstra
,
J. E.
Northrup
,
T.
Zywietz
, and
J.
Neugebauer
,
Phys. Rev. Lett.
85
,
1902
(
2000
).
You do not currently have access to this content.