CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

1.
J. N.
Anker
,
W. P.
Hall
,
O.
Lyandres
,
N. C.
Shah
, and
J.
Zhao
,
Nat. Mater.
7
,
442
453
(
2008
).
2.
P.
Christopher
,
H.
Xin
,
A.
Marimuthu
, and
S.
Linic
,
Nat. Mater.
11
,
1044
1050
(
2012
).
3.
D. P.
O'Neal
,
L. R.
Hirsch
,
N. J.
Halas
,
J. D.
Payne
, and
J. L.
West
,
Cancer Lett.
209
,
171
176
(
2004
).
4.
W. A.
Challener
,
C.
Peng
,
A. V.
Itagi
,
D.
Karns
,
W.
Peng
,
Y.
Peng
,
X.
Yang
,
X.
Zhu
,
N. J.
Gokemeijer
,
Y. T.
Hsia
 et al,
Nat. Photonics
3
,
220
224
(
2009
).
5.
P. R.
West
,
S.
Ishii
,
G. V.
Naik
,
N. K.
Emani
,
V. M.
Shalaev
, and
A.
Boltasseva
,
Laser Photonics Rev.
4
,
795
808
(
2010
).
6.
G. V.
Naik
,
V. M.
Shalaev
, and
A.
Boltasseva
,
Adv. Mater.
25
,
3264
3294
(
2013
).
7.
A.
Boltasseva
and
H. A.
Atwater
,
Science
331
,
290
291
(
2011
).
8.
M. G.
Blaber
,
M. D.
Arnold
, and
M. J.
Ford
,
J. Phys.: Condens. Matter
22
,
143201
(
2010
).
9.
L.
Ju
,
B.
Geng
,
J.
Horng
,
C.
Girit
,
M.
Martin
,
Z.
Hao
,
H. A.
Bechtel
,
X.
Liang
,
A.
Zettl
,
Y. R.
Shen
, and
F.
Wang
,
Nat. Nanotechnol.
6
,
630
634
(
2011
).
10.
G. V.
Naik
,
J.
Kim
, and
A.
Boltasseva
,
Opt. Mater. Express
1
,
1090
1099
(
2011
).
11.
M. W.
Knight
,
N. S.
King
,
L.
Liu
,
H. O.
Everitt
,
P.
Nordlander
, and
N. J.
Halas
,
ACS Nano
8
,
834
840
(
2014
).
12.
G. V.
Naik
,
J. L.
Schroeder
,
X.
Ni
,
A. V.
Kildishev
,
T. D.
Sands
, and
A.
Boltasseva
,
Opt. Mater. Express
2
,
478
489
(
2012
).
13.
U.
Guler
,
A.
Boltasseva
, and
V. M.
Shalaev
,
Science
344
,
263
264
(
2014
).
14.
C.-C.
Sun
,
S.-C.
Lee
,
W.-C.
Hwang
,
J.-S.
Hwang
,
I.-T.
Tang
, and
Y.-S.
Fu
,
Mater. Trans.
47
,
2533
2539
(
2006
).
15.
U.
Guler
,
J. C.
Ndukaife
,
G. V.
Naik
,
A. G. A.
Nnanna
,
A. V.
Kildishev
,
V. M.
Shalaev
, and
A.
Boltasseva
,
Nano Lett.
13
,
6078
6083
(
2013
).
16.
W.
Li
,
U.
Guler
,
N.
Kinsey
,
G. V.
Naik
,
A.
Boltasseva
,
J.
Guan
,
V. M.
Shalaev
, and
A. V.
Kildishev
,
Adv. Mater.
26
,
7959
7965
(
2014
).
17.
S.
Bagheri
,
C. M.
Zgrabik
,
T.
Gissibl
,
A.
Tittl
,
F.
Sterl
,
R.
Walter
,
S.
De Zuani
,
A.
Berrier
,
T.
Stauden
,
G.
Richter
 et al,
Opt. Mater. Express
5
,
2625
2633
(
2015
).
18.
G. V.
Naik
,
B.
Saha
,
J.
Liu
,
S. M.
Saber
,
E. A.
Stach
,
J. M. K.
Irudayaraj
,
T. D.
Sands
,
V. M.
Shalaev
, and
A.
Boltasseva
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
7546
7551
(
2014
).
19.
K.
Mistry
,
C.
Allen
,
C.
Auth
,
B.
Beattie
,
D.
Bergstrom
,
M.
Bost
,
M.
Brazier
,
M.
Buehler
,
A.
Cappellani
,
R.
Chau
 et al,
Tech. Dig. - Int. Electron Devices Meet.
2007
,
247
.
20.
S.
Venkatesan
,
A. V.
Gelatos
,
S.
Misra
,
B.
Smith
,
R.
Islam
,
J.
Cope
,
B.
Wilson
,
D.
Tuttle
,
R.
Cardwell
,
S.
Anderson
 et al,
Tech. Dig. - Int. Electron Devices Meet.
1997
,
769
.
21.
J.
Musschoot
,
Q.
Xie
,
D.
Deduytsche
,
S.
Van den Berghe
,
R. L.
Van Meirhaeghe
, and
C.
Detavernier
,
Microelectron. Eng.
86
,
72
77
(
2009
).
22.
F.
Fillot
,
T.
Morel
,
S.
Minoret
,
I.
Matko
,
S.
Maîtrejean
,
B.
Guillaumot
,
B.
Chenevier
, and
T.
Billon
,
Microelectron. Eng.
82
,
248
253
(
2005
).
23.
See supplementary material at http://dx.doi.org/10.1063/1.4941413 for details on ALD, ellipsometry, XPS, XRD, DC electrical characterization, nanofabrication, darkfield spectroscopy, and numerical simulations.
24.
M.
Dressel
and
G.
Grüner
, “
Electrodynamics of Solids: Optical Properties of Electrons in Matter
” (
Cambridge University Press
,
2002
).
25.
J. D.
Plummer
,
M. D.
Deal
, and
P. B.
Griffin
,
Silicon VLSI Technology: Fundamentals, Practice and Modeling
, Prentice Hall Electronics and VLSI Series (
Prentice Hall
,
2000
).
26.
S. W.
Lee
,
B. J.
Choi
,
T.
Eom
,
J. H.
Han
,
S. K.
Kim
,
S. J.
Song
,
W.
Lee
, and
C. S.
Hwang
,
Coord. Chem. Rev.
257
,
3154
3176
(
2013
).
27.
H.
Van Bui
,
A. W.
Groenland
,
A. A. I.
Aarnink
,
R. A. M.
Wolters
,
J.
Schmitz
, and
A. Y.
Kovalgin
,
J. Electrochem. Soc.
158
,
H214
(
2011
).
28.
E.
Langereis
,
S. B. S.
Heil
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
100
,
023534
(
2006
).
29.
H.
Kim
,
J. Vac. Sci. Technol. B
21
,
2231
(
2003
).
30.
L.
Jiang
,
T.
Yin
,
Z.
Dong
,
M.
Liao
,
S. J.
Tan
,
X. M.
Goh
,
D.
Allioux
,
H.
Hu
,
X.
Li
,
J. K. W.
Yang
, and
Z.
Shen
,
ACS Nano
9
,
10039
10046
(
2015
).

Supplementary Material

You do not currently have access to this content.