The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs.
References
1.
M.
Luisier
, M.
Lundstrom
, D. A.
Antoniadis
, and J.
Bokor
, “Ultimate device scaling: Intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length
,” in Electron Devices Meeting (IEDM), Washington, DC, 2011
.2.
M.
Leong
, B.
Doris
, J.
Kedzierski
, and Y.
Min
, “Silicon device scaling to the sub-10-nm regime
,” Science
306
(5704
), 2057
–2060
(2004
).3.
K. S.
Novoselov
, A. K.
Geim
, S. V.
Morozov
, D.
Jiang
, Y.
Zhang
, S. V.
Dubonos
, I. V.
Grigorieva
, and A. A.
Firsov
, “Electric field effect in atomically thin carbon films
,” Science
306
, 666
(2004
).4.
H.
Ilatikhameneh
, Y.
Tan
, B.
Novakovic
, G.
Klimeck
, R.
Rahman
, and J.
Appenzeller
, “Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials
,” IEEE J. Explor. Sold-States Comput. Devices Circuits
1
, 12
(2015
).5.
H.
Ilatikhameneh
, T.
AAmeen
, G.
Klimeck
, J.
Appenzeller
, and R.
Rahman
, “Dielectric engineered tunnel field-effect transistor
,” IEEE Electron Device Lett.
36
(10
), 1097
–1100
(2015
).6.
A.
Szabo
, S. J.
Koester
, and M.
Luisier
, “Metal-dichalcogenide hetero-TFETs: Are they a viable option for low power electronics?
,” in 2014 72nd Annual Device Research Conference (DRC), Santa Barbara, 2014
.7.
A.
Szabo
, R.
Rhyner
, and M.
Luisier
, “Ab initio simulation of single- and few-layer MoS2 transistors: Effect of electron-phonon scattering
,” Phys. Rev. B
92
, 035435
(2015
).8.
F.
Schwierz
, J.
Pezoldt
, and R.
Granzner
, “Two-dimensional materials and their prospects in transistor electronics
,” Nanoscale
7
, 8261
(2015
).9.
K. F.
Mak
, C.
Lee
, J.
Hone
, J.
Shan
, and T. F.
Heinz
, “Atomically thin MoS2: A new direct-gap semiconductor
,” Phys. Rev. Lett.
105
, 136805
(2010
).10.
K.
Alam
and R. K.
Lake
, “Monolayer MoS2 transistors beyond the technology road map
,” IEEE Trans. Electron Devices
59
(12
), 3250
(2012
).11.
B.
Radisavljevic
, A.
Radenovic
, J.
Brivio
, V.
Giacometti
, and A.
Kis
, “Single-layer MoS2 transistors
,” Nat. Nanotechnol.
6
, 147
–150
(2011
).12.
Semiconductor Industry Association, The International Technology Roadmap for Semiconductors,
2013
.13.
M.
Salmani-Jelodar
, S. R.
Mehrotra
, H.
Ilatikhameneh
, and G.
Klimeck
, “Design guidelinges for sub-12 nm nanowire MOSFETs
,” IEEE Trans. Nanotechnol.
14
(2
), 210
(2015
).14.
H.
Ilatikhameneh
, G.
Klimeck
, J.
Appenzeller
, and R.
Rahman
, “Scaling theory of electrically doped 2D materials
,” IEEE Electron Device Lett.
36
(7
), 726
(2015
).15.
M.
Brandbyge
, J.-L.
Mozos
, P.
Ordejon
, J.
Taylor
, and K.
Stokbro
, “Density-functional method for nonequilibrium electron transport
,” Phys. Rev. B
65
, 165401
(2002
).16.
See www.quantumwise.com for “Atomistix ToolKit version 14.1,” Quantumwise A/S,
2014
.17.
E.
Artacho
, J. M.
Soler
, J. D.
Gale
, A.
García
, J.
Junquera
, P.
Ordejón
, and D.
Sánchez-Portal
, “The SIESTA method for ab initio order-N materials simulation
,” J. Phys.: Condens. Matter
14
, 2745
(2002
).18.
19.
J. P.
Perdew
, K.
Burke
, and M.
Ernzerhof
, “Generalized gradient approximation made simple
,” Phys. Rev. Lett.
77
, 3865
(1996
).20.
H. J.
Monkhorst
and J. D.
Pack
, “Special points for Brillouin-zone integrations
,” Phys. Rev. B
13
, 5188
(1976
).21.
H.-Y.
Park
, M.-H.
Lim
, J.
Jeon
, G.
Yoo
, D.-H.
Kang
, S. K.
Jang
, M. H.
Jeon
, Y.
Lee
, J. H.
Cho
, G. Y.
Yeom
, W.-S.
Jung
, J.
Lee
, G.
Park
, S.
Lee
, and J.-H.
Park
, “Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation
,” ACS Nano
9
(3
), 2368
–2376
(2015
).22.
D. M.
Sim
, M.
Lim
, S.
Yim
, M.-J.
Choi
, J.
Choi
, S.
Yoo
, and Y. S.
Jung
, “Controlled doping of vacancy-contining few-layer MoS2 via highly stable thiol-based molecular chemisorption
,” ACS Nano
9
(12
), 12115
–12123
(2015
).23.
X.
Zou
, J.
Wang
, C.-H.
Chiu
, Y.
Wu
, X.
Xiao
, C.
Jiang
, W.-W.
Wu
, L.
Mai
, T.
Chen
, J.
Li
, J. C.
Ho
, and L.
Liao
, “Interface engineering for high-performance top-gated MoS2 field-effect transistors
,” Adv. Mater.
26
, 6255
–6261
(2014
).24.
H.
Kawaura
, T.
Sakamoto
, and T.
Baba
, “Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors
,” Appl. Phys. Lett.
76
, 3810
–3812
(2000
).25.
H.
Kawaura
and B.
Toshio
, “Direct tunneling from source to drain in nanometer-scale silicon transistors
,” Jpn. J. Appl. Phys, Part 1
42
, 351
–357
(2003
).26.
P.
Miro
, M.
Audiffred
, and T.
Heine
, “An atlas of two-dimensional materials
,” Chem. Soc. Rev.
43
, 6537
–6554
(2014
).27.
28.
S. R.
Mehrotra
, S.
Kim
, T.
Kubis
, M.
Povolotskyi
, M. S.
Lundstrom
, and G.
Klimeck
, “Engineering nanowire n-MOSFETs at Lg < 8 nm
,” IEEE Trans. Electron Devices
60
(7
), 2171
–2177
(2013
).© 2016 AIP Publishing LLC.
2016
AIP Publishing LLC
You do not currently have access to this content.