The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs.

1.
M.
Luisier
,
M.
Lundstrom
,
D. A.
Antoniadis
, and
J.
Bokor
, “
Ultimate device scaling: Intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length
,” in
Electron Devices Meeting (IEDM), Washington, DC, 2011
.
2.
M.
Leong
,
B.
Doris
,
J.
Kedzierski
, and
Y.
Min
, “
Silicon device scaling to the sub-10-nm regime
,”
Science
306
(
5704
),
2057
2060
(
2004
).
3.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
(
2004
).
4.
H.
Ilatikhameneh
,
Y.
Tan
,
B.
Novakovic
,
G.
Klimeck
,
R.
Rahman
, and
J.
Appenzeller
, “
Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials
,”
IEEE J. Explor. Sold-States Comput. Devices Circuits
1
,
12
(
2015
).
5.
H.
Ilatikhameneh
,
T.
AAmeen
,
G.
Klimeck
,
J.
Appenzeller
, and
R.
Rahman
, “
Dielectric engineered tunnel field-effect transistor
,”
IEEE Electron Device Lett.
36
(
10
),
1097
1100
(
2015
).
6.
A.
Szabo
,
S. J.
Koester
, and
M.
Luisier
, “
Metal-dichalcogenide hetero-TFETs: Are they a viable option for low power electronics?
,” in
2014 72nd Annual Device Research Conference (DRC), Santa Barbara, 2014
.
7.
A.
Szabo
,
R.
Rhyner
, and
M.
Luisier
, “
Ab initio simulation of single- and few-layer MoS2 transistors: Effect of electron-phonon scattering
,”
Phys. Rev. B
92
,
035435
(
2015
).
8.
F.
Schwierz
,
J.
Pezoldt
, and
R.
Granzner
, “
Two-dimensional materials and their prospects in transistor electronics
,”
Nanoscale
7
,
8261
(
2015
).
9.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
10.
K.
Alam
and
R. K.
Lake
, “
Monolayer MoS2 transistors beyond the technology road map
,”
IEEE Trans. Electron Devices
59
(
12
),
3250
(
2012
).
11.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
,
147
150
(
2011
).
12.
Semiconductor Industry Association, The International Technology Roadmap for Semiconductors,
2013
.
13.
M.
Salmani-Jelodar
,
S. R.
Mehrotra
,
H.
Ilatikhameneh
, and
G.
Klimeck
, “
Design guidelinges for sub-12 nm nanowire MOSFETs
,”
IEEE Trans. Nanotechnol.
14
(
2
),
210
(
2015
).
14.
H.
Ilatikhameneh
,
G.
Klimeck
,
J.
Appenzeller
, and
R.
Rahman
, “
Scaling theory of electrically doped 2D materials
,”
IEEE Electron Device Lett.
36
(
7
),
726
(
2015
).
15.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejon
,
J.
Taylor
, and
K.
Stokbro
, “
Density-functional method for nonequilibrium electron transport
,”
Phys. Rev. B
65
,
165401
(
2002
).
16.
See www.quantumwise.com for “Atomistix ToolKit version 14.1,” Quantumwise A/S,
2014
.
17.
E.
Artacho
,
J. M.
Soler
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
, “
The SIESTA method for ab initio order-N materials simulation
,”
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
18.
S.
Datta
,
Quantum Transport: Atom to Transistor
(
Cambridge University Press
,
2013
).
19.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
20.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
21.
H.-Y.
Park
,
M.-H.
Lim
,
J.
Jeon
,
G.
Yoo
,
D.-H.
Kang
,
S. K.
Jang
,
M. H.
Jeon
,
Y.
Lee
,
J. H.
Cho
,
G. Y.
Yeom
,
W.-S.
Jung
,
J.
Lee
,
G.
Park
,
S.
Lee
, and
J.-H.
Park
, “
Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation
,”
ACS Nano
9
(
3
),
2368
2376
(
2015
).
22.
D. M.
Sim
,
M.
Lim
,
S.
Yim
,
M.-J.
Choi
,
J.
Choi
,
S.
Yoo
, and
Y. S.
Jung
, “
Controlled doping of vacancy-contining few-layer MoS2 via highly stable thiol-based molecular chemisorption
,”
ACS Nano
9
(
12
),
12115
12123
(
2015
).
23.
X.
Zou
,
J.
Wang
,
C.-H.
Chiu
,
Y.
Wu
,
X.
Xiao
,
C.
Jiang
,
W.-W.
Wu
,
L.
Mai
,
T.
Chen
,
J.
Li
,
J. C.
Ho
, and
L.
Liao
, “
Interface engineering for high-performance top-gated MoS2 field-effect transistors
,”
Adv. Mater.
26
,
6255
6261
(
2014
).
24.
H.
Kawaura
,
T.
Sakamoto
, and
T.
Baba
, “
Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors
,”
Appl. Phys. Lett.
76
,
3810
3812
(
2000
).
25.
H.
Kawaura
and
B.
Toshio
, “
Direct tunneling from source to drain in nanometer-scale silicon transistors
,”
Jpn. J. Appl. Phys, Part 1
42
,
351
357
(
2003
).
26.
P.
Miro
,
M.
Audiffred
, and
T.
Heine
, “
An atlas of two-dimensional materials
,”
Chem. Soc. Rev.
43
,
6537
6554
(
2014
).
27.
E.
Merzbacher
,
Quantum Mechanics
, 3rd ed. (
Wiley
,
1998
), Chap. 6.
28.
S. R.
Mehrotra
,
S.
Kim
,
T.
Kubis
,
M.
Povolotskyi
,
M. S.
Lundstrom
, and
G.
Klimeck
, “
Engineering nanowire n-MOSFETs at Lg < 8 nm
,”
IEEE Trans. Electron Devices
60
(
7
),
2171
2177
(
2013
).
You do not currently have access to this content.