We report on selective-area metal-organic vapor phase epitaxy and magnetic characterization of coupled MnAs/AlGaAs nanoclusters formed on thin Al2O3 insulating layers crystallized on Si(111) substrates. Cross-sectional transmission electron microscopy reveals that poly-crystalline γ-Al2O3 grains are formed after an annealing treatment of the amorphous Al2O3 layers deposited by atomic layer deposition on Si(111) substrates. The ⟨111⟩ direction of the γ-Al2O3 grains tends to be oriented approximately parallel to the ⟨111⟩ direction of the Si substrate. We observe that hexagonal MnAs nanoclusters on AlGaAs buffer layers grown by selective-area metal-organic vapor phase epitaxy on partially SiO2-masked Al2O3 insulator crystallized on Si(111) substrates are oriented with the c-axis along the ⟨111⟩ direction of the substrates, but exhibit a random in-plane orientation. A likely reason is the random orientation of the poly-crystalline γ-Al2O3 grains in the Al2O3 layer plane. Magnetic force microscopy studies at room temperature reveal that arrangements of coupled MnAs nanoclusters exhibit a complex magnetic domain structure. Such arrangements of coupled MnAs nanoclusters may also show magnetic random telegraph noise, i.e., jumps between two discrete resistance levels, in a certain temperature range, which can be explained by thermally activated changes of the complex magnetic structure of the nanocluster arrangements.

1.
R.
Engel-Herbert
,
T.
Hesjedal
,
D. M.
Schaadt
,
L.
Däweritz
, and
K. H.
Ploog
,
Appl. Phys. Lett.
88
,
052505
(
2006
).
2.
F.
Ishikawa
,
K.
Koyama
,
K.
Watanabe
, and
H.
Wada
,
Jpn. J. Appl. Phys.
42
,
L918
(
2003
).
3.
M. T.
Elm
,
C.
Michel
,
J.
Stehr
,
D. M.
Hofmann
,
P. J.
Klar
,
S.
Ito
,
S.
Hara
, and
H.-A.
Krug von Nidda
,
J. Appl. Phys.
107
,
013701
(
2010
).
4.
P.
Pampuch
,
A. K.
Das
,
A.
Ney
,
L.
Däweritz
,
R.
Koch
, and
K. H.
Ploog
,
Phys. Rev. Lett.
91
,
147203
(
2003
).
5.
M.
Ramsteiner
,
H. Y.
Hao
,
A.
Kawaharazuka
,
H. J.
Zhu
,
M.
Kästner
,
R.
Hey
,
L.
Däweritz
,
H. T.
Grahn
, and
K. H.
Ploog
,
Phys. Rev. B
66
,
081304(R)
(
2002
).
6.
D.
Saha
,
M.
Holub
,
P.
Bhattacharya
, and
Y. C.
Liao
,
Appl. Phys. Lett.
89
,
142504
(
2006
).
7.
V.
Garcia
,
H.
Jaffrès
,
J.-M.
George
,
M.
Marangolo
,
M.
Eddrief
, and
V. H.
Etgens
,
Phys. Rev. Lett.
97
,
246802
(
2006
).
8.
S.
Sugahara
and
M.
Tanaka
,
Appl. Phys. Lett.
80
,
1969
(
2002
).
9.
P. N.
Hai
,
S.
Ohya
,
M.
Tanaka
,
S. E.
Barnes
, and
S.
Maekawa
,
Nature
458
,
489
(
2009
).
10.
C.
Michel
,
M. T.
Elm
,
B.
Goldlücke
,
S. D.
Baranovskii
,
P.
Thomas
,
W.
Heimbrodt
, and
P. J.
Klar
,
Appl. Phys. Lett.
92
,
223119
(
2008
).
11.
K.
Akeura
,
M.
Tanaka
,
T.
Nishinaga
, and
J.
De Boeck
,
J. Appl. Phys.
79
,
4957
(
1996
).
12.
A. M.
Nazmul
,
A. G.
Banshchikov
,
H.
Shimizu
, and
M.
Tanaka
,
J. Cryst. Growth
227–228
,
874
(
2001
).
13.
M.
Solzi
,
C.
Pernechele
,
M.
Ghidini
,
M.
Natali
, and
M.
Bolzan
,
J. Magn. Magn. Mater.
322
,
1565
(
2010
).
14.
M. F. H.
Wolff
,
D.
Görlitz
,
K.
Nielsch
,
M. E.
Messing
, and
K.
Deppert
,
Nanotechnology
22
,
055602
(
2011
).
15.
J.
Sadowski
,
A.
Siusys
,
A.
Kovacs
,
T.
Kasama
,
R. E.
Dunin-Borkowski
,
T.
Wojciechowski
,
A.
Reszka
, and
B.
Kowalski
,
Phys. Status Solidi B
248
,
1576
(
2011
).
16.
S.
Hara
,
D.
Kawamura
,
H.
Iguchi
,
J.
Motohisa
, and
T.
Fukui
,
J. Cryst. Growth
310
,
2390
(
2008
).
17.
S.
Ito
,
S.
Hara
,
T.
Wakatsuki
, and
T.
Fukui
,
Appl. Phys. Lett.
94
,
243117
(
2009
).
18.
K.
Komagata
,
S.
Hara
,
S.
Ito
, and
T.
Fukui
,
Jpn. J. Appl. Phys.
50
,
06GH01
(
2011
).
19.
S.
Hara
and
K.
Komagata
,
Phys. Status Solidi B
252
,
1925
(
2015
).
20.
M. T.
Elm
,
P. J.
Klar
,
S.
Ito
, and
S.
Hara
,
Phys. Rev. B
83
,
235305
(
2011
).
21.
M. T.
Elm
,
P. J.
Klar
,
S.
Ito
,
S.
Hara
, and
H.-A.
Krug von Nidda
,
Phys. Rev. B
84
,
035309
(
2011
).
22.
M.
Fischer
,
M. T.
Elm
,
H.
Kato
,
S.
Sakita
,
S.
Hara
, and
P. J.
Klar
,
Phys. Rev. B
92
,
165306
(
2015
).
23.
M.
Fischer
,
M. T.
Elm
,
S.
Sakita
,
S.
Hara
, and
P. J.
Klar
,
Appl. Phys. Lett.
106
,
032401
(
2015
).
24.
C.
Heiliger
,
M.
Czerner
,
P. J.
Klar
, and
S.
Hara
,
IEEE Trans. Magn.
46
,
1702
(
2010
).
25.
S.
Hara
and
K.
Morita
(unpublished).
26.
S.
Sakita
and
S.
Hara
,
Jpn. J. Appl. Phys.
54
,
075504
(
2015
).
27.
S.
Jakschik
,
U.
Schroeder
,
T.
Hecht
,
M.
Gutsche
,
H.
Seidl
, and
J. W.
Bartha
,
Thin Solid Films
425
,
216
(
2003
).
28.
L.
Zhang
,
H. C.
Jiang
,
C.
Liu
,
J. W.
Dong
, and
P.
Chow
,
J. Phys. D
40
,
3707
(
2007
).
29.
C. M.
Tanner
,
M. F.
Toney
,
J.
Lu
,
H. O.
Blom
,
M.
Sawkar-Mathur
,
M. A.
Tafesse
, and
J. P.
Chang
,
J. Appl. Phys.
102
,
104112
(
2007
).
30.
W. E.
Fenwick
,
N.
Li
,
T.
Xu
,
A.
Melton
,
S.
Wang
,
H.
Yu
,
C.
Summers
,
M.
Jamil
, and
I. T.
Ferguson
,
J. Cryst. Growth
311
,
4306
(
2009
).
31.
N.
Li
,
S. J.
Wang
,
C. L.
Huang
,
Z. C.
Feng
,
A.
Valencia
,
J.
Nause
,
C.
Summers
, and
I.
Ferguson
,
J. Cryst. Growth
310
,
4908
(
2008
).
32.
M. T.
Elm
and
S.
Hara
,
Adv. Mater.
26
,
8079
(
2014
).
33.
H.
Kato
,
S.
Sakita
, and
S.
Hara
,
J. Cryst. Growth
414
,
151
(
2015
).
34.
F.
Coppinger
,
J.
Genoe
,
D. K.
Maude
,
X.
Kleber
,
L. B.
Rigal
,
U.
Gennser
,
J. C.
Portal
,
K. E.
Singer
,
P.
Rutter
,
T.
Taskin
,
A. R.
Peaker
, and
A. C.
Wright
,
Phys. Rev. B
57
,
7182
(
1998
).
35.
W.
Wernsdorfer
,
E. B.
Orozco
,
K.
Hasselbach
,
A.
Benoit
,
B.
Barbara
,
N.
Demoncy
,
A.
Loiseau
,
H.
Pascard
, and
D.
Mailly
,
Phys. Rev. Lett.
78
,
1791
(
1997
).
You do not currently have access to this content.