In this study, we apply self-assembled-monolayer (SAM)-based gate dielectrics to the fabrication of molybdenum disulfide (MoS2) field-effect transistors. A simple fabrication process involving the selective formation of a SAM on metal oxides in conjunction with the dry transfer of MoS2 flakes was established. A subthreshold slope (SS) of 69 mV/dec and no hysteresis were demonstrated with the ultrathin SAM-based gate dielectrics accompanied by a low gate leakage current. The small SS and no hysteresis indicate the superior interfacial properties of the MoS2/SAM structure. Cross-sectional transmission electron microscopy revealed a sharp and abrupt interface of the MoS2/SAM structure. The SAM-based gate dielectrics are found to be applicable to the fabrication of low-voltage MoS2 field-effect transistors and can also be extended to various layered semiconductor materials. This study opens up intriguing possibilities of SAM-based gate dielectrics in functional electronic devices.

1.
J. C.
Love
,
L. A.
Estroff
,
J. K.
Kriebel
,
R. G.
Nuzzo
, and
G. M.
Whitesides
,
Chem. Rev.
105
,
1103
(
2005
).
2.
H.
Klauk
,
U.
Zschieschang
,
J.
Pflaum
, and
M.
Halik
,
Nature
445
,
745
(
2007
).
3.
H.
Klauk
, in
Proceedings of the 42nd European Solid-State Device Research Conference
(
2012
), p.
41
.
4.
S. M.
Sze
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley
,
New York
,
2007
).
5.
Q. H.
Wang
,
K. K.
Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
6.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
7.
Y.
Li
,
C.-Y.
Xu
,
P.
Hu
, and
L.
Zhen
,
ACS Nano
7
,
7795
(
2013
).
8.
A. C.
Gomez
,
M.
Buscema
,
R.
Molenaar
,
V.
Singh
,
L.
Janssen
,
H. S. J.
van der Zant
, and
G. A.
Steele
,
2D Mater.
1
,
011002
(
2014
).
9.
R.
Yang
,
X.
Zheng
,
Z.
Wang
,
C. J.
Miller
, and
P. X.-L.
Feng
,
J. Vac. Sci. Technol., B
32
,
061203
(
2014
).
10.
J.
Hu
,
R. G.
Beck
,
T.
Deng
,
R. M.
Westervelt
,
K. D.
Maranowski
,
A. C.
Gossard
, and
G. M.
Whitesides
,
Appl. Phys. Lett.
71
,
2020
(
1997
).
11.
K.
Choi
,
Y. T.
Lee
,
S.-W.
Min
,
H. S.
Lee
,
T.
Nam
,
H.
Kim
, and
S.
Im
,
J. Mater. Chem. C
1
,
7803
(
2013
).
12.
P. J.
Jeon
,
J. S.
Kim
,
J. Y.
Lim
,
Y.
Cho
,
A.
Pezeshki
,
H. S.
Lee
,
S.
Yu
,
S.-W.
Min
, and
S.
Im
,
ACS Appl. Mater. Interfaces
7
,
22333
(
2015
).
13.
M. A.
Meitl
,
Z.-T.
Zhu
,
V.
Kumar
,
K. J.
Lee
,
X.
Feng
,
Y. Y.
Huang
,
I.
Adesida
,
R. G.
Nuzzo
, and
J. A.
Rogers
,
Nat. Mater.
5
,
33
(
2006
).
14.
K.
Kuribara
,
H.
Wang
,
N.
Uchiyama
,
K.
Fukuda
,
T.
Yokota
,
U.
Zschieschang
,
C.
Jaye
,
D.
Fischer
,
H.
Klauk
,
T.
Yamamoto
,
K.
Takimiya
,
M.
Ikeda
,
H.
Kuwabara
,
T.
Sekitani
,
Y.-L.
Loo
, and
T.
Someya
,
Nat. Commun.
3
,
723
(
2012
).
15.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
Wiley
,
New York
,
2005
).
16.
A.
Ayari
,
E.
Cobas
,
O.
Ogundadegbe
, and
M. S.
Fuhrer
,
J. Appl. Phys.
101
,
014507
(
2007
).
17.
D.
Kälblein
,
H.
Ryu
,
F.
Ante
,
B.
Fenk
,
K.
Hahn
,
K.
Kern
, and
H.
Klauk
,
ACS Nano
8
,
6840
(
2014
).
18.
T.
Sekitani
,
T.
Yokota
,
U.
Zschieschang
,
H.
Klauk
,
S.
Bauer
,
K.
Takeuchi
,
M.
Takamiya
,
T.
Sakurai
, and
T.
Someya
,
Science
326
,
1516
(
2009
).
19.
W.
Bao
,
X.
Cai
,
D.
Kim
,
K.
Sridhara
, and
M. S.
Fuhrer
,
Appl. Phys. Lett.
102
,
042104
(
2013
).
20.
S.
McDonnell
,
R.
Addou
,
C.
Buie
,
R. M.
Wallace
, and
C. L.
Hinkle
,
ACS Nano
8
,
2880
(
2014
).
21.
S.
Kim
,
A.
Konar
,
W.-S.
Hwang
,
J. H.
Lee
,
J.
Lee
,
J.
Yang
,
C.
Jung
,
H.
Kim
,
J.-B.
Yoo
,
J.-Y.
Choi
,
Y. W.
Jin
,
S. Y.
Lee
,
D.
Jena
,
W.
Choi
, and
K.
Kim
,
Nat. Commun.
3
,
1011
(
2012
).
22.
K. J.
Yang
and
C.
Hu
,
IEEE Trans. Electron Devices
46
,
1500
(
1999
).
23.
A.
Bashir
,
P. H.
Wöbkenberg
,
J.
Smith
,
J. M.
Ball
,
G.
Adamopoulos
,
D. D. C.
Bradley
, and
T. D.
Anthopoulos
,
Adv. Mater.
21
,
2226
(
2009
).
You do not currently have access to this content.