The wake-up effect which is observed in ferroelectric hafnium oxide is investigated in yttrium doped hafnium oxide prepared by chemical solution deposition. It can be shown that not the amount of cycles but the duration of the applied electrical field is essential for the wake-up. Temperature dependent wake-up cycling in a range of −160 °C to 100 °C reveals a strong temperature activation of the wake-up, which can be attributed to ion rearrangement during cycling. By using asymmetrical electrodes, resistive valence change mechanism switching can be observed coincident with ferroelectric switching. From the given results, it can be concluded that redistribution of oxygen vacancies is the origin of the wake-up effect.

1.
T. S.
Boescke
,
J.
Mueller
,
D.
Braeuhaus
,
U.
Schroeder
, and
U.
Boettger
, “
Ferroelectricity in hafnium oxide thin films
,”
Appl. Phys. Lett.
99
,
102903
(
2011
).
2.
J.
Mueller
,
P.
Polakowski
,
S.
Mueller
, and
T.
Mikolajick
, “
Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects
,”
ECS J. Solid State Sci. Technol.
4
,
N30
N35
(
2015
).
3.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
, and
C. S.
Hwang
, “
Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1xO2 films
,”
Nano Energy
12
,
131
140
(
2015
).
4.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K.
Do Kim
,
J.
Mueller
,
A.
Kersch
,
U.
Schroeder
,
T.
Mikolajick
, and
C. S.
Hwang
, “
Ferroelectricity and antiferroelectricity of doped thin HfO2-based films
,”
Adv. Mater.
27
,
1811
1831
(
2015
).
5.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
, and
C. S.
Hwang
, “
Thin HfxZr1-xO2 films: A new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability
,”
Adv. Energy Mater.
4
,
1400610
(
2014
).
6.
D.
Zhou
,
J.
Xu
,
Q.
Li
,
Y.
Guan
,
F.
Cao
,
X.
Dong
,
J.
Mueller
,
T.
Schenk
, and
U.
Schroeder
, “
Wake-up effects in Si-doped hafnium oxide ferroelectric thin films
,”
Appl. Phys. Lett.
103
,
192904
(
2013
).
7.
S.
Mueller
,
C.
Adelmann
,
A.
Singh
,
S.
Van Elshocht
,
U.
Schroeder
, and
T.
Mikolajick
, “
Ferroelectricity in Gd-doped HfO2 thin films
,”
ECS J. Solid State Sci. Technol.
1
,
N123
N126
(
2012
).
8.
T.
Schenk
,
S.
Mueller
,
U.
Schroeder
,
R.
Materlik
,
A.
Kersch
,
M.
Popovici
,
C.
Adelmann
,
S.
Van Elshocht
, and
T.
Mikolajick
, “
Strontium doped hafnium oxide thin films: Wide process window for ferroelectric memories
,” in
ESSDERC
(
2013
).
9.
T.
Olsen
,
U.
Schroeder
,
S.
Mueller
,
A.
Krause
,
D.
Martin
,
A.
Singh
,
J.
Mueller
,
M.
Geidel
, and
T.
Mikolajick
, “
Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties
,”
Appl. Phys. Lett.
101
,
082905
1–082905-4
(
2012
).
10.
S.
Starschich
,
D.
Griesche
,
T.
Schneller
,
R.
Waser
, and
U.
Boettger
, “
Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes
,”
Appl. Phys. Lett.
104
,
202903
(
2014
).
11.
P. D.
Lomenzo
,
Q.
Takmeel
,
C.
Zhou
,
C. M.
Fancher
,
E.
Lambers
,
N. G.
Rudawski
,
J. L.
Jones
,
S.
Moghaddam
, and
T.
Nishida
, “
TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films
,”
J. Appl. Phys.
117
,
134105
(
2015
).
12.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
Y. H.
Lee
,
T.
Moon
,
K. D.
Kim
,
S. D.
Hyun
, and
C. S.
Hwang
, “
Study on the size effect in Hf0.5Zr0.5O2 films thinner than 8 nm before and after wake-up field cycling
,”
Appl. Phys. Lett.
107
,
192907
(
2015
).
13.
T.
Schenk
,
M.
Hoffmann
,
J.
Ocker
,
M.
Pesic
,
T.
Mikolajick
, and
U.
Schroeder
, “
Complex internal bias fields in ferroelectric hafnium oxide
,”
ACS Appl. Mater. Interfaces
7
,
20224
20233
(
2015
).
14.
S.
Brivio
,
J.
Frascaroli
, and
S.
Spiga
, “
Role of metal-oxide interfaces in the multiple resistance switching regimes of Pt/HfO2/TiN devices
,”
Appl. Phys. Lett.
107
,
023504
1–023504-5
(
2015
).
15.
H. Y.
Lee
,
P. S.
Chen
,
T. Y.
Wu
,
Y. S.
Chen
,
C. C.
Wang
,
P. J.
Tzeng
,
C. H.
Lin
,
F.
Chen
,
C. H.
Lien
, and
M.-J.
Tsai
, “
Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM
,”
IEEE Int. Electron Dev. Meet.
2008
,
1
4
.
16.
M.
Sowinska
,
T.
Bertaud
,
D.
Walczyk
,
S.
Thiess
,
P.
Calka
,
L.
Alff
,
C.
Walczyk
, and
T.
Schroeder
, “
In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells
,”
J. Appl. Phys.
115
,
204509
(
2014
).
17.
L.
Zhao
,
H.
Chen
,
S.
Wu
,
Z.
Jiang
,
S.
Yu
,
T.
Hou
,
H. P.
Wong
, and
Y.
Nishi
, “
Multi-level control of conductive nano-filament evolution in HfO2 ReRAM by pulse-train operations
,”
Nanoscale
6
,
5698
5702
(
2014
).
18.
L.
Goux
,
X. P.
Wang
,
Y. Y.
Chen
,
L.
Pantisano
,
N.
Jossart
,
B.
Govoreanu
,
J. A.
Kittl
,
M.
Jurczak
,
L.
Altimime
, and
D. J.
Wouters
, “
Roles and effects of TiN and Pt electrodes in resistive-switching HfO2 systems
,”
Electrochem. Solid-State Lett.
14
,
H244
(
2011
).
19.
P.
Gonon
,
M.
Mougenot
,
C.
Vallee
,
C.
Jorel
,
V.
Jousseaume
,
H.
Grampeix
, and
F.
El Kamel
, “
Resistance switching in HfO2 metal-insulator-metal devices
,”
J. Appl. Phys.
107
,
074507
(
2010
).
20.
M.
Lanza
,
G.
Bersuker
,
M.
Porti
,
E.
Miranda
,
M.
Nafria
, and
X.
Aymerich
, “
Resistive switching in hafnium dioxide layers: Local phenomenon at grain boundaries
,”
Appl. Phys. Lett.
101
,
193502
(
2012
).
21.
J. J.
Yang
,
M. D.
Pickett
,
X.
Li
,
D. A. A.
Ohlberg
,
D. R.
Stewart
, and
R. S.
Williams
, “
Memristive switching mechanism for metal/oxide/metal nanodevices
,”
Nat. Nanotechnol.
3
,
429
433
(
2008
).
22.
S.
Larentis
,
F.
Nardi
,
S.
Balatti
,
D. C.
Gilmer
, and
D.
Ielmini
, “
Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling
,”
IEEE Trans. Electron Devices
59
,
2468
2475
(
2012
).
23.
A.
Marchewka
,
B.
Roesgen
,
K.
Skaja
,
H.
Du
,
C.-L.
Jia
,
J.
Mayer
,
V.
Rana
,
R.
Waser
, and
S.
Menzel
, “
Nanoionic resistive switching memories: On the physical nature of the dynamic reset process
,”
Adv. Electron. Mater.
(published online 2015).
24.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
, “
Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges
,”
Adv. Mater.
21
,
2632
2663
(
2009
).
25.
J. J.
Yang
,
F.
Miao
,
M. D.
Pickett
,
D. A. A.
Ohlberg
,
D. R.
Stewart
,
C. N.
Lau
, and
R. S.
Williams
, “
The mechanism of electroforming of metal oxide memristive switches
,”
Nanotechnology
20
,
215201
(
2009
).
26.
E.
Abbaspour
,
S.
Menzel
, and
C.
Jungemann
, “
The role of the interface reactions in the electroforming of redox-based resistive switching devices using KMC simulations
,” in
2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington D.C., USA
(
2015
), pp.
293
296
.
27.
S. U.
Sharath
,
T.
Bertaud
,
J.
Kurian
,
E.
Hildebrandt
,
C.
Walczyk
,
P.
Calka
,
P.
Zaumseil
,
M.
Sowinska
,
D.
Walczyk
,
A.
Gloskovskii
,
T.
Schroeder
, and
L.
Alff
, “
Towards forming-free resistive switching in oxygen engineered HfO2x
,”
Appl. Phys. Lett.
104
,
063502
(
2014
).
28.
S.
Starschich
,
D.
Griesche
,
T.
Schneller
, and
U.
Böttger
, “
Chemical solution deposition of ferroelectric hafnium oxide for future lead free ferroelectric devices
,”
ECS J. Solid State Sci. Technol.
4
,
P419
P423
(
2015
).
29.
T.
Schenk
,
U.
Schroeder
,
M.
Pesic
,
M.
Popovici
,
Y. V.
Pershin
, and
T.
Mikolajick
, “
Electric field cycling behavior of ferroelectric hafnium oxide
,”
ACS Appl. Mater. Interfaces
6
,
19744
19751
(
2014
).
30.
L.
Zhao
,
S.-W.
Ryu
,
A.
Hazeghi
,
D.
Duncan
,
B.
Magyari-Köpe
, and
Y.
Nishi
, “
Dopant selection rules for extrinsic tunability of HfOx RRAM characteristics: A systematic study
,” in
Proceedings of the 2013 Symposium on VLSI Technology
(
2013
).
31.
A.
Marchewka
,
R.
Waser
, and
S.
Menzel
, “
Physical simulation of dynamic resistive switching in metal oxides using a Schottky contact barrier model
,” in
2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington D.C., USA
(
2015
), pp.
297
300
.
32.
M.
Hoffmann
,
U.
Schroeder
,
T.
Schenk
,
T.
Shimizu
,
H.
Funakubo
,
O.
Sakata
,
D.
Pohl
,
M.
Drescher
,
C.
Adelmann
,
R.
Materlik
,
A.
Kersch
, and
T.
Mikolajick
, “
Stabilizing the ferroelectric phase in doped hafnium oxide
,”
J. Appl. Phys.
118
,
072006
(
2015
).
33.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
Y. H.
Lee
,
S. D.
Hyun
, and
C. S.
Hwang
, “
Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films
,”
J. Mater. Chem. C
3
,
6291
6300
(
2015
).
34.
S.
Zafar
,
H.
Jagannathan
,
L. F.
Edge
, and
D.
Gupta
, “
Measurement of oxygen diffusion in nanometer scale HfO2 gate dielectric films
,”
Appl. Phys. Lett.
98
,
152903
(
2011
).
You do not currently have access to this content.