We report on sub-terahertz photoconductivity under the magnetic field of a two dimensional topological insulator based on HgTe quantum wells. We perform a detailed visualization of Landau levels by means of photoconductivity measured at different gate voltages. This technique allows one to determine a critical magnetic field, corresponding to topological phase transition from inverted to normal band structure, even in almost gapless samples. The comparison with realistic calculations of Landau levels reveals a smaller role of bulk inversion asymmetry in HgTe quantum wells than it was assumed previously.

1.
W.
Knap
,
S.
Nadar
,
H.
Videlier
,
S.
Boubanga-Tombet
,
D.
Coquillat
,
N.
Dyakonova
,
F.
Teppe
,
K.
Karpierz
,
J.
Lusakowski
,
M.
Sakowicz
,
I.
Kasalynas
,
D.
Seliuta
,
G.
Valusis
,
T.
Otsuji
,
Y.
Meziani
,
A.
El Fatimy
,
S.
Vandenbrouk
,
K.
Madjour
,
D.
Theron
, and
C.
Gaquiere
, “
Field effect transistors for terahertz detection and emission
,”
J. Infrared, Millimeter, Terahertz Waves
32
,
618
(
2011
).
2.
D. J.
Thouless
,
M.
Kohmoto
,
M. P.
Nightingale
, and
M.
den Nijs
, “
Quantized Hall conductance in a two-dimensional periodic potential
,”
Phys. Rev. Lett.
49
,
405
408
(
1982
).
3.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
1761
(
2006
).
4.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Quantum spin Hall insulator state in HgTe quantum wells
,”
Science
318
,
766
770
(
2007
).
5.
B.
Buttner
,
C. X.
Liu
,
G.
Tkachov
,
E. G.
Novik
,
C.
Brune
,
H.
Buhmann
,
E. M.
Hankiewicz
,
P.
Recher
,
B.
Trauzettel
,
S. C.
Zhang
, and
L. W.
Molenkamp
, “
Single valley Dirac fermions in zero-gap HgTe quantum wells
,”
Nat. Phys.
7
,
418
422
(
2011
).
6.
G. M.
Gusev
,
A. D.
Levin
,
Z. D.
Kvon
,
N. N.
Mikhailov
, and
S. A.
Dvoretsky
, “
Quantum Hall effect in n-p-n and n-2D topological insulator-n junctions
,”
Phys. Rev. Lett.
110
,
076805
(
2013
).
7.
G. M.
Gusev
,
E. B.
Olshanetsky
,
Z. D.
Kvon
,
N. N.
Mikhailov
, and
S. A.
Dvoretsky
, “
Linear magnetoresistance in HgTe quantum wells
,”
Phys. Rev. B
87
,
081311
(
2013
).
8.
M.
Orlita
,
K.
Masztalerz
,
C.
Faugeras
,
M.
Potemski
,
E. G.
Novik
,
C.
Brüne
,
H.
Buhmann
, and
L. W.
Molenkamp
, “
Fine structure of zero-mode landau levels in HgTe/HgxCd1xTe quantum wells
,”
Phys. Rev. B
83
,
115307
(
2011
).
9.
M.
Zholudev
,
F.
Teppe
,
M.
Orlita
,
C.
Consejo
,
J.
Torres
,
N.
Dyakonova
,
M.
Czapkiewicz
,
J.
Wróbel
,
G.
Grabecki
,
N.
Mikhailov
,
S.
Dvoretskii
,
A.
Ikonnikov
,
K.
Spirin
,
V.
Aleshkin
,
V.
Gavrilenko
, and
W.
Knap
, “
Magnetospectroscopy of two-dimensional HgTe-based topological insulators around the critical thickness
,”
Phys. Rev. B
86
,
205420
(
2012
).
10.
A. M.
Kadykov
,
F.
Teppe
,
C.
Consejo
,
L.
Viti
,
M. S.
Vitiello
,
S. S.
Krishtopenko
,
S.
Ruffenach
,
S. V.
Morozov
,
M.
Marcinkiewicz
,
W.
Desrat
,
N.
Dyakonova
,
W.
Knap
,
V. I.
Gavrilenko
,
N. N.
Mikhailov
, and
S. A.
Dvoretsky
, “
Terahertz detection of magnetic field-driven topological phase transition in HgTe-based transistors
,”
Appl. Phys. Lett.
107
,
152101
(
2015
).
11.
M. S.
Zholudev
,
F.
Teppe
,
S. V.
Morozov
,
M.
Orlita
,
C.
Consejo
,
S.
Ruffenach
,
W.
Knap
,
V. I.
Gavrilenko
,
S. A.
Dvoretskii
, and
N. N.
Mikhailov
, “
Anticrossing of landau levels in HgTe/CdHgTe (013) quantum wells with an inverted band structure
,”
JETP Lett.
100
,
790
794
(
2015
).
12.
E. Y.
Ma
,
M. R.
Calvo
,
J.
Wang
,
B.
Lian
,
M.
Muhlbauer
,
C.
Brune
,
Y.-T.
Cui
,
K.
Lai
,
W.
Kundhikanjana
,
Y.
Yang
,
M.
Baenninger
,
M.
Konig
,
C.
Ames
,
H.
Buhmann
,
P.
Leubner
,
L. W.
Molenkamp
,
S.-C.
Zhang
,
D.
Goldhaber-Gordon
,
M. A.
Kelly
, and
Z.-X.
Shen
, “
Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry
,”
Nat. Commun.
6
,
7252
(
2015
).
13.
D. A.
Kozlov
,
D.
Bauer
,
J.
Ziegler
,
R.
Fisher
,
M. L.
Savchenko
,
Z. D.
Kvon
,
N. N.
Mikhailov
,
S. A.
Dvoretsky
, and
D.
Weiss
, “
Probing quantum capacitance in a 3D topological insulator
,”
Phys. Rev. Lett.
116
,
166802
(
2016
).
14.
L.
Vicarelli
,
M. S.
Vitiello
,
D.
Coquillat
,
A.
Lombardo
,
A. C.
Ferrari
,
W.
Knap
,
M.
Polini
,
V.
Pellegrini
, and
A.
Tredicucci
, “
Graphene field-effect transistors as room-temperature terahertz detectors
,”
Nat. Mater.
11
,
865
871
(
2012
).
15.
W.
Knap
,
M.
Dyakonov
,
D.
Coquillat
,
F.
Teppe
,
N.
Dyakonova
,
J.
Łusakowski
,
K.
Karpierz
,
M.
Sakowicz
,
G.
Valusis
,
D.
Seliuta
,
I.
Kasalynas
,
A.
El Fatimy
,
Y. M.
Meziani
, and
T.
Otsuji
, “
Field effect transistors for terahertz detection: Physics and first imaging applications
,”
J. Infrared, Millimeter, Terahertz Waves
30
,
1319
(
2009
).
16.
M.
Dyakonov
and
M.
Shur
, “
Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current
,”
Phys. Rev. Lett.
71
,
2465
2468
(
1993
).
17.
M.
Sakowicz
,
M. B.
Lifshits
,
O. A.
Klimenko
,
F.
Schuster
,
D.
Coquillat
,
F.
Teppe
, and
W.
Knap
, “
Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects
,”
J. Appl. Phys.
110
,
054512
(
2011
).
18.
D. A.
Kozlov
,
Z. D.
Kvon
,
N. N.
Mikhailov
, and
S. A.
Dvoretsky
, “
Weak localization of Dirac fermions in HgTe quantum wells
,”
JETP Lett.
96
,
730
734
(
2013
).
19.
S.
Dvoretsky
,
N.
Mikhailov
,
Y.
Sidorov
,
V.
Shvets
,
S.
Danilov
,
B.
Wittman
, and
S.
Ganichev
, “
Growth of HgTe quantum wells for IR to THz detectors
,”
J. Electron. Mater.
39
,
918
923
(
2010
).
20.
L.
Liao
,
J.
Bai
,
R.
Cheng
,
Y.-C.
Lin
,
S.
Jiang
,
Y.
Qu
,
Y.
Huang
, and
X.
Duan
, “
Sub-100 nm channel length graphene transistors
,”
Nano Lett.
10
,
3952
3956
(
2010
).
21.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
191
(
2007
).
22.
E. G.
Novik
,
A.
Pfeuffer-Jeschke
,
T.
Jungwirth
,
V.
Latussek
,
C. R.
Becker
,
G.
Landwehr
,
H.
Buhmann
, and
L. W.
Molenkamp
, “
Band structure of semimagnetic Hg1yMnyTe quantum wells
,”
Phys. Rev. B
72
,
035321
(
2005
).
23.
S.
Wiedmann
,
A.
Jost
,
C.
Thienel
,
C.
Brüne
,
P.
Leubner
,
H.
Buhmann
,
L. W.
Molenkamp
,
J. C.
Maan
, and
U.
Zeitler
, “
Temperature-driven transition from a semiconductor to a topological insulator
,”
Phys. Rev. B
91
,
205311
(
2015
).
24.
Mercury Cadmium Telluride—Growth, Properties and Applications
, edited by
P.
Capper
and
J.
Garland
(
Wiley
,
2011
).
25.
M.
König
,
H.
Buhmann
,
L. W.
Molenkamp
,
T.
Hughes
,
C.-X.
Liu
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
The quantum spin Hall effect: Theory and experiment
,”
J. Phys. Soc. Jpn.
77
,
031007
(
2008
).
26.
M. V.
Durnev
and
S. A.
Tarasenko
, “
Magnetic field effects on edge and bulk states in topological insulators based on HgTe/CdHgTe quantum wells with strong natural interface inversion asymmetry
,”
Phys. Rev. B
93
,
075434
(
2016
).
27.
W.-K.
Tse
and
A. H.
MacDonald
, “
Interaction effects in the optical conductivity of bilayer graphene: Drude-interband coupling and screening
,”
Phys. Rev. B
80
,
195418
(
2009
).
28.
K.
Shizuya
, “
Many-body corrections to cyclotron resonance in monolayer and bilayer graphene
,”
Phys. Rev. B
81
,
075407
(
2010
).
29.
V. E.
Bisti
and
N. N.
Kirova
, “
Coulomb interaction and electron-hole asymmetry in cyclotron resonance of bilayer graphene in a high magnetic field
,”
Phys. Rev. B
84
,
155434
(
2011
).
30.
S. S.
Krishtopenko
, “
Magnetoplasmon excitations from integer-filled Landau levels in narrow-gap quantum wells
,”
J. Phys.: Condens. Matter
25
,
365602
(
2013
).
31.
S. S.
Krishtopenko
,
A. V.
Ikonnikov
,
M.
Orlita
,
Y. G.
Sadofyev
,
M.
Goiran
,
F.
Teppe
,
W.
Knap
, and
V. I.
Gavrilenko
, “
Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells
,”
J. Appl. Phys.
117
,
112813
(
2015
).
32.
W.
Kohn
, “
Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas
,”
Phys. Rev.
123
,
1242
1244
(
1961
).
You do not currently have access to this content.