Recent experimental demonstration on the coexistence of metallic and semiconducting phases in the same monolayer MoS2 crystal has attracted much attention for its use in ultra-low contact resistance-MoS2 transistors. However, the electronic structures of the metallic-to-semiconducting phase boundaries, which appear to dictate the carrier injection in such transistors, are not yet well understood. In this letter, interfacing the 2H and 1T′ polytypes appropriately, we first model the “beta” (β) and the “gamma” (γ) phase boundaries, and demonstrate good agreement with experiential results. We then apply first-principles based density functional theory to calculate the electronic structures for those optimized geometries. We further employ non equilibrium Green's function formalism to evaluate the transmission spectra and the local density of states (LDOS) in order to assess the Schottky barrier nature of the phase boundaries. Our study reveals that while the γ boundary yields p-type Schottky barrier, the β boundary leads to the distinct symmetric Schottky barrier with an atomically sharp transition region. This understanding could be useful for designing high performance transistors using phase-engineered MoS2 crystals.

1.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
150
(
2011
).
2.
F.
Schwierz
,
Nat. Nanotechnol.
5
,
487
496
(
2010
).
3.
S.
Das
and
J.
Appenzeller
,
Appl. Phys. Lett.
103
,
103501
(
2013
).
4.
T.
Roy
,
M.
Tosun
,
M.
Hettick
,
G. H.
Ahn
,
C.
Hu
, and
A.
Javey
,
Appl. Phys. Lett.
108
,
083111
(
2016
).
5.
K.
Alam
and
R.
Lake
,
IEEE Trans. Electron Devices
59
,
3250
3254
(
2012
).
6.
Y.-C.
Lin
,
C.-Y. S.
Chang
,
R. K.
Ghosh
,
J.
Li
,
H.
Zhu
,
R.
Addou
,
B.
Diaconescu
,
T.
Ohta
,
X.
Peng
,
N.
Lu
,
M. J.
Kim
,
J. T.
Robinson
,
R. M.
Wallace
,
T. S.
Mayer
,
S.
Datta
,
L.-J.
Li
, and
J. A.
Robinson
,
Nano Lett.
14
(
12
),
6936
6941
(
2014
).
7.
P.
Miró
,
M.
Audiffred
, and
T.
Heine
,
Chem. Soc. Rev.
43
,
6537
6554
(
2014
).
8.
D.
Saha
and
S.
Mahapatra
,
J. Appl. Phys.
119
,
134304
(
2016
).
9.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
10.
N. R.
Pradhan
,
D.
Rhodes
,
Q.
Zhang
,
S.
Talapatra
,
M.
Terrones
,
P. M.
Ajayan
, and
L.
Balicas
,
Appl. Phys. Lett.
102
,
123105
(
2013
).
11.
H.
Wang
,
L.
Yu
,
Y.-H.
Lee
,
Y.
Shi
,
A.
Hsu
,
M. L.
Chin
,
L.-J.
Li
,
M.
Dubey
,
J.
Kong
, and
T.
Palacios
,
Nano Lett.
12
,
4674
4680
(
2012
).
12.
J.
Kang
,
W.
Liu
,
D.
Sarkar
,
D.
Jena
, and
K.
Banerjee
,
Phys. Rev. X
4
,
031005
(
2014
).
13.
I.
Popov
,
G.
Seifert
, and
D.
Tomànek
,
Phys. Rev. Lett.
108
,
156802
(
2012
).
14.
J.
Kang
,
W.
Liu
, and
K.
Banerjee
,
Appl. Phys. Lett.
104
,
093106
(
2014
).
15.
C.
Gong
,
L.
Colombo
,
R. M.
Wallace
, and
K.
Cho
,
Nano Lett.
14
,
1714
1720
(
2014
).
16.
M. S.
Choi
,
D.
Qu
,
D.
Lee
,
X.
Liu
,
K.
Watanabe
,
T.
Taniguchi
, and
W. J.
Yoo
,
ACS Nano
8
,
9332
9340
(
2014
).
17.
Y.
Du
,
L.
Yang
,
J.
Zhang
,
H.
Liu
,
K.
Majumdar
,
P. D.
Kirsch
, and
P. D.
Ye
,
IEEE Electron Device Lett.
35
(
5
),
599
601
(
2014
).
18.
N.
Kaushik
,
D.
Karmakar
,
A.
Nipane
,
S.
Karande
, and
S.
Lodha
,
ACS Appl. Mater. Interfaces
8
,
256
263
(
2016
).
19.
R.
Kappera
,
D.
Voiry
,
S. E.
Yalcin
,
B.
Branch
,
G.
Gupta
,
A. D.
Mohite
, and
M.
Chhowalla
,
Nat. Mater.
13
,
1128
1134
(
2014
).
20.
G.
Eda
,
T.
Fujita
,
H.
Yamaguchi
,
D.
Voiry
,
M.
Chen
, and
M.
Chhowalla
,
ACS Nano
6
,
7311
7317
(
2012
).
21.
Y.-C.
Lin
,
D. O.
Dumcenco
,
Y.-S.
Huang
, and
K.
Suenaga
,
Nat. Nanotechnol.
9
,
391
396
(
2014
).
22.
Supplementary Information in Doi: 10.1038/NNANO.2014.64, Available at http://www.nature.com/, Nature Nanotechnology.
23.
Y.-C.
Lin
and
K.
Suenaga
, National Institute of Advanced Industrial Science and Technology, Japan, private communication (2015).
24.
D.
Voiry
,
A.
Goswami
,
R.
Kappera
,
C.
Silva
,
D.
Kaplan
,
T.
Fujita
,
M.
Chen
,
T.
Asefa
, and
M.
Chhowalla
,
Nat. Chem.
7
,
45
49
(
2015
).
25.
G.
Gao
,
Y.
Jiao
,
F.
Ma
,
Y.
Jiao
,
E.
Waclawik
, and
A.
Du
,
J. Phys. Chem. C
119
,
13124
13128
(
2015
).
26.
K. C.
Santosh
,
C.
Zhang
,
S.
Hong
,
R. M.
Wallace
, and
K.
Cho
,
2D Mater.
2
,
035019
(
2015
).
27.
Z.
Hu
,
S.
Zhang
,
Y.-N.
Zhang
,
D.
Wang
,
H.
Zeng
, and
L.-M.
Liu
,
Phys. Chem. Chem. Phys.
17
,
1099
1105
(
2015
).
28.
M.
Calandra
,
Phys. Rev. B
88
,
245428
(
2013
).
29.
D. B.
Putungan
,
S.-H.
Lin
, and
J.-L.
Kuo
,
Phys. Chem. Chem. Phys.
17
,
21702
(
2015
).
30.
B.
Ouyang
,
G.
Lan
,
Y.
Guo
,
Z.
Mi
, and
J.
Song
,
Appl. Phys. Lett.
107
,
191903
(
2015
).
31.
See http://quantumwise.com/ for QuantumWise Atomistix ToolKit (ATK) with Virtual NanoLab.
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
33.
34.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
69
,
195113
(
2004
).
35.
X.
Qian
,
J.
Liu
,
L.
Fu
, and
J.
Li
,
Science
346
,
1344
(
2014
).
36.
K.-A. N.
Duerloo
,
Y.
Li
, and
E. J.
Reed
,
Nat. Commun.
5
,
4214
(
2014
).
37.
D.
Saha
and
S.
Mahapatra
, “
Analytical insight into the lattice thermal conductivity and heat capacity of monolayer MoS2
,”
Phys. E
(in press).
38.
P. T.
Metzger
,
Phys. Rev. E
70
,
051303
(
2004
).
39.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
165401
(
2002
).
You do not currently have access to this content.