Porous hydrophilic surfaces have been shown to enhance the critical heat flux (CHF) in boiling heat transfer. In this work, the separate effects of pore size and porous layer thickness on the CHF of saturated water at atmospheric pressure were experimentally investigated using carefully engineered surfaces. It was shown that, for a fixed pore diameter (∼20 nm), there is an optimum layer thickness (∼2 μm), for which the CHF value is maximum, corresponding to ∼115% enhancement over the value for uncoated surfaces. Similarly, a maximum CHF value (∼100% above the uncoated surface CHF) was observed while changing the pore size at a constant layer thickness (∼1 μm). To explain these CHF maxima, we propose a mechanistic model that can capture the effect of pore size and pore thickness on CHF. The good agreement found between the model and experimental data supports the hypothesis that CHF is governed by the competition between capillary wicking, viscous pressure drop and evaporation, as well as conduction heat transfer within the porous layer. The model can be used to guide the development of engineered surfaces with superior boiling performance.

1.
J. G.
Collier
and
J. R.
Thome
,
Convective Boiling and Condensation
(
Oxford University Press
,
1994
).
2.
J.
Buongiorno
,
Ann. Nucl Energy.
63
,
9
21
(
2014
).
3.
D. H.
Min
,
G. S.
Hwang
,
Y.
Usta
,
O. N.
Cora
,
M.
Koc
, and
M.
Kaviany
,
Int. J. Heat Mass Transfer
52
,
2607
2613
(
2009
).
4.
G. S.
Hwang
and
M.
Kaviany
,
Int. J. Heat Mass Transfer
49
,
844
849
(
2006
).
5.
S. D.
Park
,
S. W.
Lee
,
S.
Kang
,
I. C.
Bang
,
J. H.
Kim
,
H. S.
Shin
,
D. W.
Lee
, and
D. W.
Lee
,
Appl. Phys. Lett.
97
,
023103
(
2010
).
6.
S. J.
Kim
,
I. C.
Bang
,
J.
Buongiorno
, and
L. W.
Hu
,
Appl. Phys. Lett.
89
,
153107
(
2006
).
7.
B.
Feng
,
K.
Weaver
, and
G. P.
Peterson
,
Appl. Phys. Lett.
100
,
053120
(
2012
).
8.
H. S.
Ahn
,
H. J.
Jo
,
S. H.
Kang
, and
M. H.
Kim
,
Appl. Phys. Lett.
98
,
071908
(
2011
).
9.
B. J.
Zhang
and
K J.
Kim
,
Appl. Phys. Lett.
101
,
054104
(
2012
).
10.
H.
O'Hanley
,
C.
Coyle
,
J.
Buongiorno
,
T.
McKrell
,
L. W.
Hu
,
M.
Rubner
, and
R.
Cohen
,
Appl. Phys. Lett.
103
,
024102
(
2013
).
11.
H. D.
Kim
and
M. H.
Kim
,
Appl. Phys. Lett.
91
,
014104
(
2007
).
12.
N. S.
Dhillon
,
J.
Buongiorno
, and
K. K.
Varanasi
,
Nat. Commun.
6
,
8247
(
2015
).
13.
K. H.
Chu
,
R.
Enright
, and
E. N.
Wang
,
Appl. Phys. Lett.
100
,
241603
(
2012
).
14.
M. M.
Rahman
,
E.
Olceroglu
, and
M.
McCarthy
,
Langmuir
30
,
11225
11234
(
2014
).
15.
S. G.
Kandlikar
,
ASME J. Heat Transfer
123
,
1071
1079
(
2001
).
16.
J.
Ramilison
,
P.
Sadasivan
, and
J. H.
Lienhard
,
ASME J. Heat Transfer
114
,
287
290
(
1992
).
17.
P.
Berenson
,
Int. J. Heat Mass Transfer
5
,
985
999
(
1962
).
18.
I. L.
Pioro
,
W.
Rohsenow
, and
S. S.
Doerffer
,
Int. J. Heat Mass Transfer
47
,
5033
5044
(
2004
).
19.
R.
Furberg
,
B.
Palm
,
S.
Li
,
M.
Toprak
, and
M.
Muhammed
,
ASME J. Heat Transfer
131
,
101010
(
2009
).
20.
S. G.
Liter
and
M.
Kaviany
,
Int. J. Heat Mass Transfer
44
,
4287
4311
(
2001
).
21.
Y. V.
Polezhaev
and
S. A.
Kovalev
,
Therm. Eng.
37
,
617
620
(
1990
).
22.
See supplementary material at http://dx.doi.org/10.1063/1.4954012 for surface characterizations, LbL deposition technique as well as derivation of Eq. (1).
23.
D.
Lee
,
Z.
Gemici
,
M. F.
Rubner
, and
R. E.
Cohen
,
Langmuir
23
,
8833
8837
(
2007
).
24.
D.
Lee
,
D.
Omolade
,
R. E.
Cohen
, and
M. F.
Rubner
,
Chem. Mater.
19
,
1427
1433
(
2007
).
25.
F. C.
Cebeci
,
Z.
Wu
,
L.
Zhai
,
R. E.
Cohen
, and
M. F.
Rubner
,
Langmuir
22
,
2856
2862
(
2006
).
26.
M. A.
Hanlon
and
H. B.
Ma
,
ASME J. Heat Transfer
125
,
644
652
(
2003
).

Supplementary Material

You do not currently have access to this content.