X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front of the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.

1.
T.
Weitkamp
,
A.
Diaz
,
C.
David
,
F.
Pfeiffer
,
M.
Stampanoni
,
P.
Cloetens
, and
E.
Ziegler
,
Opt. Express
13
,
6296
(
2005
).
2.
A.
Momose
,
S.
Kawamoto
,
I.
Koyama
,
Y.
Hamaishi
,
K.
Takai
, and
Y.
Suzuki
,
Jpn. J. Appl. Phys., Part 2
42
,
L866
(
2003
).
3.
C.
David
,
B.
Nöhammer
,
H. H.
Solak
, and
E.
Ziegler
,
Appl. Phys. Lett.
81
,
3287
(
2002
).
4.
M.
Stampanoni
,
Z.
Wang
,
T.
Thüring
,
C.
David
,
E.
Roessl
,
M.
Trippel
,
R. A.
Kubic-Huch
,
G.
Singer
,
M. K.
Kohl
, and
N.
Hauser
,
Invest. Radiol.
46
,
801
806
(
2011
).
5.
D.
Stutman
,
T. J.
Beck
,
J.
Carrino
, and
C. O.
Bingham
,
Phys. Med. Biol.
56
,
5697
5720
(
2011
).
6.
T.
Thüring
,
R.
Guggenberger
,
H.
Alkadhi
,
J.
Hodler
,
M.
Vich
,
Z.
Wang
,
C.
David
, and
M.
Stampanoni
,
Skeletal Radiol.
42
(
6
),
827
835
(
2013
).
7.
V.
Revol
,
I.
Jerjen
,
C.
Kottler
,
P.
Schutz
,
R.
Kaufmann
,
T.
Luthi
,
U.
Sennhauser
,
U.
Straumann
, and
C.
Urban
,
J. Appl. Phys.
110
,
044912
(
2011
).
8.
D.
Chapman
,
W.
Thomlinson
,
R. E.
Johnston
,
D.
Washburn
,
E.
Pisano
,
N.
Gmür
,
Z.
Zhong
,
R.
Menk
,
F.
Arfelli
, and
D.
Sayers
,
Phys. Med. Biol.
42
,
2015
(
1997
).
9.
A.
Snigirev
,
I.
Snigireva
,
S.
Kohn
,
S.
Kuznetsov
, and
I.
Schelokov
,
Rev. Sci. Instrum.
66
,
5486
(
1995
).
10.
F.
Pfeiffer
,
T.
Weitkamp
,
O.
Bunk
, and
C.
David
,
Nat. Phys.
2
,
258
(
2006
).
11.
A.
Olivo
and
R.
Speller
,
Appl. Phys. Lett.
91
,
074106
(
2007
).
12.
C.
David
,
J.
Bruder
,
T.
Rohbeck
,
C.
Grunzweig
,
C.
Kottler
,
A.
Diaz
,
O.
Bunk
, and
F.
Pfeiffer
,
Micro. Eng.
84
,
1172
1177
(
2007
).
13.
S.
Rutishauser
,
M.
Bednarzik
,
I.
Zanette
,
T.
Weitkamp
,
M.
Börner
,
J.
Mohr
, and
C.
David
,
Microelectron. Eng.
101
,
12
16
(
2013
).
14.
A. V.
Bronnikov
,
J. Opt. Soc. Am. A
19
,
472
(
2002
).
15.
D.
Paganin
and
K. A.
Nugent
,
Phys. Rev. Lett.
80
,
2586
(
1998
).
16.
K.
Morgan
,
D.
Paganin
, and
K.
Siu
,
Opt. Express
19
,
19781
19789
(
2011
).
17.
R.
Hofmann
,
J.
Moosmann
, and
T.
Baumbach
,
Opt. Express
19
,
25881
25890
(
2011
).
18.
J.
Moosmann
,
R.
Hofmann
, and
T.
Baumbach
,
Opt. Express
19
,
12066
12073
(
2011
).
19.
J.
Moosmann
,
R.
Hofmann
,
A. V.
Bronnikov
, and
T.
Baumbach
,
Opt. Express
18
,
25771
25785
(
2010
).
20.
X.
Wu
,
H.
Liu
, and
A.
Yan
,
Opt. Lett.
30
,
379
381
(
2005
).
21.
J.-P.
Guigay
,
Optik
49
,
121
(
1977
).
22.
E.
Bennett
,
R.
Kopace
,
A. F.
Stein
, and
H.
Wen
,
Med. Phys.
37
,
6047
(
2010
).
23.
H.
Wen
,
E.
Bennett
,
R.
Kopace
,
A. F.
Stein
, and
V.
Pai
,
Opt. Lett.
35
,
1932
(
2010
).
24.
A.
Mozzanica
,
A.
Bergamaschi
,
R.
Dinapoli
,
H.
Graafsma
,
D.
Greiffenberg
,
B.
Henrich
,
I.
Johnson
,
M.
Lohmann
,
R.
Valeria
,
B.
Schmitt
, and
S.
Xintian
,
J. Instrum.
7
,
C01019
(
2012
).
25.
S.
Cartier
,
A.
Bergamaschi
,
R.
Dinapoli
,
D.
Greiffenberg
,
I.
Johnson
,
J. H.
Jungmann
,
D.
Mezza
,
A.
Mozzanica
,
B.
Schmitt
,
X.
Shi
,
M.
Stampanoni
,
J.
Sun
, and
G.
Tinti
,
J. Instrum.
9
,
C05027
(
2014
).
26.
S. M.
Sze
,
Semiconductor Devices—Physics and Technology
(
John Wiley & Sons
,
Zweite Auflage
,
2002
).
27.
A.
Bergamaschi
,
Ch.
Broennimann
,
R.
Dinapoli
,
E.
Eikenberry
,
F.
Gozzo
,
B.
Henrich
,
M.
Kobas
,
P.
Kraft
,
B.
Patterson
, and
B.
Schmitt
,
Nucl. Instrum. Methods Phys. Res., Sect. A
591
,
163
167
(
2008
).
28.
A.
Bergamaschi
,
S.
Cartier
,
R.
Dinapoli
,
D.
Greiffenberg
,
J. H.
Jungmann-Smith
,
D.
Mezza
,
A.
Mozzanica
,
B.
Schmitt
,
X.
Shi
, and
G.
Tinti
,
J. Instrum.
10
,
C01033
(
2015
).
29.
R.
Turchetta
,
Nucl. Instrum. Methods Phys. Res., Sect. A
335
,
44
58
(
1993
).
30.
A.
Schubert
,
A.
Bergamaschi
,
C.
David
,
R.
Dinapoli
,
S.
Elbracht-Leong
,
S.
Gorelick
,
H.
Graafsma
,
B.
Henrich
,
I.
Johnson
,
M.
Lohmann
,
A.
Mozzanica
,
V.
Radicci
,
R.
Rassol
,
L.
Schädler
,
B.
Schmitt
,
X.
Shi
, and
B.
Sobott
,
J. Synchrotron Radiat.
19
,
359
(
2012
).
31.
M.
Stampanoni
,
A.
Groso
,
A.
Isenegger
,
G.
Mikuljan
,
Q.
Chen
,
D.
Meister
,
M.
Lange
,
R.
Betemps
,
S.
Henein
, and
R.
Abela
,
AIP Conf. Proc.
879
,
848
(
2007
).
32.
S.
Cartier
,
A.
Bergamaschi
,
R.
Dinapoli
,
D.
Greiffenberg
,
I.
Johnson
,
J. H.
Jungmann-Smith
,
D.
Mezza
,
A.
Mozzanica
,
X.
Shi
,
G.
Tinti
,
B.
Schmitt
, and
M.
Stampanoni
,
J. Instrum.
10
,
C03022
(
2015
).
You do not currently have access to this content.