Terahertz electromagnetic waves have long been proposed to be ideal for spectroscopy and imaging through non-polar dielectric materials that contain no water. Terahertz radiation may thus be useful for monitoring burn and wound injury recovery, as common care treatments involve application of both a clinical dressing and topical ointment. Here, we investigate the optical properties of typical care treatments in the millimeter wave (150–300 GHz), terahertz (0.3–3 THz), and infrared (14.5–0.67 μm) ranges of the electromagnetic spectrum. We find that THz radiation realizes low absorption coefficients and high levels of transmission compared to infrared wavelengths, which were strongly attenuated. Terahertz imaging can enable safe, non-ionizing, noninvasive monitoring of the healing process directly through clinical dressings and recovery ointments, minimizing the frequency of dressing changes and thus increasing the rate of the healing process.

1.
D.
Church
,
S.
Elsayed
,
O.
Reid
,
B.
Winston
, and
R.
Lindsay
,
Clin. Microbiol. Rev.
19
(
2
),
403
(
2006
).
2.
R. J.
Morin
and
N. L.
Tomaselli
,
Clin. Plast. Surg.
34
(
4
),
643
(
2007
).
3.
G. G.
Gauglitz
and
F. N.
Williams
,
Overview of the Management of the Severely Burned Patient
, edited by
M. G.
Jeschke
and
K. A.
Collins
(
UpToDate
,
Waltham, MA
,
2015
).
4.
E. D.
Morgan
and
W. F.
Miser
,
Treatment of Minor Thermal Burns
, edited by
M. E.
Moreira
and
J.
Grayzel
(
UpToDate
,
Waltham, MA
,
2015
).
5.
Wounds International, International Best Practice Guidelines: Effective skin and wound management of non-complex burns,
2014
.
6.
M.
Tenenhaus
and
H.-O.
Rennekampff
,
Local Treatment of Burns: Topical Antimicrobial Agents and Dressings
, edited by
M. G.
Jeschke
and
K. A.
Collins
(
UpToDate
,
Waltham, MA
,
2015
).
7.
R. L.
Sheridan
,
L.
Petras
,
M.
Lydon
, and
P. M.
Salvo
,
J. Burn Care Rehabil.
18
(
2
),
139
(
1997
).
8.
J. E.
Bjarnason
,
T. L. J.
Chan
,
A. W. M.
Lee
,
M. A.
Celis
, and
E. R.
Brown
,
Appl. Phys. Lett.
85
(
4
),
519
(
2004
).
9.
Z. D.
Taylor
,
R. S.
Singh
,
M. O.
Culjat
,
J. Y.
Suen
,
W. S.
Grundfest
,
H.
Lee
, and
E. R.
Brown
,
Opt. Lett.
33
(
11
),
1258
(
2008
).
10.
J. Y.
Suen
,
P.
Tewari
,
Z. D.
Taylor
,
W. S.
Grundfest
,
H.
Lee
,
E. R.
Brown
,
M. O.
Culjat
, and
R. S.
Singh
,
Stud. Health Technol. Inf.
142
,
364
(
2009
).
11.
P.
Tewari
,
M. O.
Culjat
,
Z. D.
Taylor
,
J. Y.
Suen
,
B. O.
Burt
,
H.
Lee
,
E. R.
Brown
,
W. S.
Grundfest
, and
R. S.
Singh
,
paper presented at the Advanced Biomedical and Clinical Diagnostic Systems VII
,
San Jose, CA
,
2009
.
12.
M. H.
Arbab
,
T. C.
Dickey
,
D. P.
Winebrenner
,
A.
Chen
,
M. B.
Klein
, and
P. D.
Mourad
,
Biomed. Opt. Express
2
(
8
),
2339
(
2011
).
13.
D. B.
Bennett
,
L.
Wenzao
,
Z. D.
Taylor
,
W. S.
Grundfest
, and
E. R.
Brown
,
IEEE Sens. J.
11
(
5
),
1253
(
2011
).
14.
J.-T.
Oh
,
S.-W.
Lee
,
Y.-S.
Kim
,
K.-B.
Suhr
, and
B.-M.
Kim
,
J. Biomed. Opt.
11
(
4
),
041124
(
2006
).
15.
W. J.
Padilla
,
Optical Techniques for Solid-State Materials Characterization
(
CRC Press
,
2011
), p.
3
.
16.
J. T.
Kindt
and
C. A.
Schmuttenmaer
,
J. Phys. Chem.
100
(
24
),
10373
(
1996
).
17.
É.
Hérault
,
M.
Hofman
,
F.
Garet
, and
J.-L.
Coutaz
,
Opt. Lett.
38
(
15
),
2708
(
2013
).
18.
C. B.
Reid
,
E.
Pickwell-MacPherson
,
J. G.
Laufer
,
A. P.
Gibson
,
J. C.
Hebden
, and
V. P.
Wallace
,
Phys. Med. Biol.
55
(
16
),
4825
(
2010
).
19.
J.
Xu
,
K. W.
Plaxco
, and
S. J.
Allen
,
J. Chem. Phys.
124
(
3
),
036101
(
2006
).
20.
D. M.
Wieliczka
,
S.
Weng
, and
M. R.
Querry
,
Appl. Opt.
28
(
9
),
1714
(
1989
).
21.
Z. D.
Taylor
,
J.
Garritano
,
S.
Sung
,
N.
Bajwa
,
D. B.
Bennett
,
B.
Nowroozi
,
P.
Tewari
,
J.
Sayre
,
J. P.
Hubschman
,
S.
Deng
,
E. R.
Brown
, and
W. S.
Grundfest
,
IEEE Trans. Terahertz Sci. Technol.
5
(
2
),
170
(
2015
).
You do not currently have access to this content.