Solution-processed p-type oxide semiconductors have recently attracted increasing interests for the applications in low-cost optoelectronic devices and low-power consumption complementary metal-oxide-semiconductor circuits. In this work, p-type nickel oxide (NiOx) thin films were prepared using low-temperature solution process and integrated as the channel layer in thin-film transistors (TFTs). The electrical properties of NiOx TFTs, together with the characteristics of NiOx thin films, were systematically investigated as a function of annealing temperature. By introducing aqueous high-k aluminum oxide (Al2O3) gate dielectric, the electrical performance of NiOx TFT was improved significantly compared with those based on SiO2 dielectric. Particularly, the hole mobility was found to be 60 times enhancement, quantitatively from 0.07 to 4.4 cm2/V s, which is mainly beneficial from the high areal capacitance of the Al2O3 dielectric and high-quality NiOx/Al2O3 interface. This simple solution-based method for producing p-type oxide TFTs is promising for next-generation oxide-based electronic applications.

1.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
,
Adv. Mater.
24
,
2945
(
2012
).
2.
P.
Pattanasattayavong
,
A. D.
Mottram
,
F.
Yan
, and
T. D.
Anthopoulos
,
Adv. Funct. Mater.
25
,
6802
(
2015
).
3.
R. F.
Martins
,
A.
Ahnood
,
N.
Correia
,
L. M.
Pereira
,
R.
Barros
,
P. M.
Barquinha
,
R.
Costa
,
I. M.
Ferreira
,
A.
Nathan
, and
E. E.
Fortunato
,
Adv. Funct. Mater.
23
,
2153
(
2013
).
4.
S. Y.
Kim
,
C. H.
Ahn
,
J. H.
Lee
,
Y. H.
Kwon
,
S.
Hwang
,
J. Y.
Lee
, and
H. K.
Cho
,
ACS Appl. Mater. Interfaces
5
,
2417
(
2013
).
5.
J. R.
Manders
,
S. W.
Tsang
,
M. J.
Hartel
,
T. H.
Lai
,
S.
Chen
,
C. M.
Amb
,
F. R.
Reynolds
, and
F.
So
,
Adv. Funct. Mater.
23
,
2993
(
2013
).
6.
J.
Jiang
,
X.
Wang
,
Q.
Zhang
,
J.
Li
, and
X.
Zhang
,
Phys. Chem. Chem. Phys.
15
,
6875
(
2013
).
7.
M. D.
Irwin
,
D. B.
Buchholz
,
A. W.
Hains
,
R. P.
Chang
, and
T. J.
Marks
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
2783
(
2008
).
8.
S.
Takami
,
R.
Hayakawa
,
Y.
Wakayama
, and
T.
Chikyow
,
Nanotechnology
21
,
134009
(
2010
).
9.
C. C.
Hsu
,
H. W.
Su
,
C. H.
Hou
,
J. J.
Shyue
, and
F. Y.
Tsai
,
Nanotechnology
26
,
385201
(
2015
).
10.
S.
Liu
,
R.
Liu
,
Y.
Chen
,
S.
Ho
,
J. H.
Kim
, and
F.
So
,
Chem. Mater.
26
,
4528
(
2014
).
11.
F.
Jiang
,
W. C.
Choy
,
X.
Li
,
D.
Zhang
, and
J.
Cheng
,
Adv. Mater.
27
,
2930
(
2015
).
12.
G.
Liu
,
A.
Liu
,
H.
Zhu
,
B.
Shin
,
E.
Fortunato
,
R.
Martins
,
Y.
Wang
, and
F.
Shan
,
Adv. Funct. Mater.
25
,
2564
(
2015
).
13.
J.
Socratous
,
K. K.
Banger
,
Y.
Vaynzof
,
A.
Sadhanala
,
A. D.
Brown
,
A.
Sepe
,
U.
Steiner
, and
H.
Sirringhaus
,
Adv. Funct. Mater.
25
,
1873
(
2015
).
14.
A.
Liu
,
G.
Liu
,
H.
Zhu
,
F.
Xu
,
E.
Fortunato
,
R.
Martins
, and
F.
Shan
,
ACS Appl. Mater. Interfaces
6
,
17364
(
2014
).
15.
P.
Pattanasattayavong
,
S.
Thomas
,
G.
Adamopoulos
,
M. A.
McLachlan
, and
T. D.
Anthopoulos
,
Appl. Phys. Lett.
102
,
163505
(
2013
).
16.
C. Y.
Jeong
,
J.
Sohn
,
S. H.
Song
,
I. T.
Cho
,
J. H.
Lee
,
E. S.
Cho
, and
H. I.
Kwon
,
Appl. Phys. Lett.
102
,
082103
(
2013
).
17.
J. M.
Yu
,
G. X.
Liu
,
A.
Liu
,
Y.
Meng
,
B. C.
Shin
, and
F. K.
Shan
,
J. Mater. Chem. C
3
,
9509
(
2015
).
18.
X.
Zou
,
G.
Fang
,
L.
Yuan
,
M.
Li
,
W.
Guan
, and
X.
Zhao
,
IEEE Electron Device Lett.
31
,
827
(
2010
).
19.
A.
Liu
,
G.
Liu
,
H.
Zhu
,
H.
Song
,
B.
Shin
,
E.
Fortunato
,
R.
Martins
, and
F.
Shan
,
Adv. Funct. Mater.
25
,
7180
(
2015
).
20.
Y. S.
Rim
,
H. J.
Chen
,
X. L.
Kou
,
H. S.
Duan
,
H.
Zhou
,
M.
Cai
,
H. J.
Kim
, and
Y.
Yang
,
Adv. Mater.
26
,
4273
(
2014
).
21.
A.
Liu
,
G.
Liu
,
H.
Zhu
,
Y.
Meng
,
H.
Song
,
B.
Shin
,
E.
Fortunato
,
R.
Martins
, and
F.
Shan
,
Curr. Appl. Phys.
15
,
S75
(
2015
).
22.
E.
Lee
,
J.
Ko
,
K. H.
Lim
,
K.
Kim
,
S. Y.
Park
,
J. M.
Myoung
, and
Y. S.
Kim
,
Adv. Funct. Mater.
24
,
4689
(
2014
).
23.
A.
Liu
,
G.
Liu
,
H.
Zhu
,
B.
Shin
,
E.
Fortunato
,
R.
Martins
, and
F.
Shan
,
RSC Adv.
5
,
86606
(
2015
).
24.
G.
Liu
,
A.
Liu
,
Y.
Meng
,
F.
Shan
,
B.
Shin
,
W.
Lee
, and
C.
Cho
,
J. Nanosci. Nanotechnol.
15
,
2185
(
2015
).
25.
H. Y.
Chong
,
K. W.
Han
,
Y. S.
No
, and
T. W.
Kim
,
Appl. Phys. Lett.
99
,
161908
(
2011
).
26.
J. H.
Park
,
Y. B.
Yoo
,
K. H.
Lee
,
W. S.
Jang
,
J. Y.
Oh
,
S. S.
Chae
, and
H. K.
Baik
,
ACS Appl. Mater. Interfaces
5
,
410
(
2013
).
27.
D.
Yoo
,
I.
Kim
,
S.
Kim
,
C. H.
Hahn
,
C.
Lee
, and
S.
Cho
,
Appl. Surf. Sci.
253
,
3888
(
2007
).
28.
X. G.
Yu
,
L.
Zeng
,
N.
Zhou
,
P.
Guo
,
F.
Shi
,
D. B.
Buchholz
,
Q.
Ma
,
J.
Yu
,
V. P.
Dravid
,
R. P. H.
Chang
,
M.
Bedzyk
,
T. J.
Marks
, and
A.
Facchetti
,
Adv. Mater.
27
,
2390
(
2015
).
29.
S.
Nalage
,
M.
Chougule
,
S.
Sen
,
P.
Joshi
, and
V.
Patil
,
Thin Solid Films
520
,
4835
(
2012
).
30.
R.
Hong
,
J.
Huang
,
H.
He
,
Z.
Fan
, and
J.
Shao
,
Appl. Surf. Sci.
242
,
346
(
2005
).
31.
D.
Bao
,
X.
Yao
,
N.
Wakiya
,
K.
Shinozaki
, and
N.
Mizutani
,
Appl. Phys. Lett.
79
,
3767
(
2001
).
32.
S.
Jeong
,
Y. G.
Ha
,
J.
Moon
,
A.
Facchetti
, and
T. J.
Marks
,
Adv. Mater.
22
,
1346
(
2010
).
33.
S.
Park
,
K. H.
Kim
,
J. W.
Jo
,
S. J.
Sung
,
K. T.
Kim
,
W. J.
Lee
,
J. Y.
Kim
,
H. J.
Kim
,
G. R.
Yi
,
Y. H.
Kim
,
M. H.
Yoon
, and
S. K.
Park
,
Adv. Funct. Mater.
25
,
2807
(
2015
).
34.
J.
Hwang
,
K.
Lee
,
Y.
Jeong
,
Y. U.
Lee
,
C.
Pearson
,
M. C.
Petty
, and
H. D.
Kim
,
Adv. Mater. Interfaces
1
,
1400206
(
2014
).
35.
C.
Avis
,
H. R.
Hwang
, and
J.
Jang
,
ACS Appl. Mater. Interfaces
6
,
10941
(
2014
).
36.
S. K.
Garlapati
,
T. T.
Baby
,
S.
Dehm
,
M.
Hammad
,
V. S. K.
Chakravadhanula
,
R.
Kruk
,
H.
Hahn
, and
S.
Dasgupta
,
Small
11
,
3591
(
2015
).
37.
K.
Okamura
,
B.
Nasr
,
R. A.
Brand
, and
H.
Hahn
,
J. Mater. Chem.
22
,
4607
(
2012
).
38.
K.
Everaerts
,
L.
Zeng
,
W. H.
Hennek
,
D. I.
Camacho
,
D.
Jariwala
,
M. J.
Bedzyk
,
M. C.
Hersam
, and
T. J.
Marks
,
ACS Appl. Mater. Interfaces
5
,
11884
(
2013
).
You do not currently have access to this content.