The phase transition from monoclinic WO3 to cubic LixWO3 during lithiation of WO3 is one of the key features for tungsten oxide as the most used electrochromic material. Conventionally, the lithium intercalation of WO3 has been studied by building generic layered electrochromic device combining with structural characterization and electrochemistry measurement at macro scale. In-situ transmission electron microscopy (in-situ TEM) has been proposed as a method for revealing the detailed mechanism of structural, physical, and chemical properties. Here, we use in-situ TEM method to investigate the formation and evolution of LixWO3 in real-time during the electrochemical lithiation of WO3 nanowires. The dynamic lithiation process is recorded by TEM imaging, diffraction, and electron energy loss spectroscopy. The WO3-LixWO3 phase boundary of reaction front has been observed at high resolution. The timeliness of crystallinity of LixWO3 and the intercalation channels for Li ions are also identified. Moreover, the co-existence of both polycrystalline Li-poor area and amorphous Li-rich phases of LixWO3 was found. Our results provide an insight into the basic lithiation process of WO3, which is significantly important for understanding the electrochromic mechanism of tungsten oxide.

1.
S. K.
Deb
,
Sol. Energy Mater. Sol. Cells
92
,
245
(
2008
).
2.
C.-G.
Granqvist
,
Nat. Mater.
5
,
89
(
2006
).
3.
S. K.
Deb
,
Sol. Energy Mater. Sol. Cells
39
,
191
(
1995
).
4.
C. G.
Granqvist
,
Thin Solid Films
564
,
1
(
2014
).
5.
H.
Zheng
,
J. Z.
Ou
,
M. S.
Strano
,
R. B.
Kaner
,
A.
Mitchell
, and
K.
Kalantar-zadeh
,
Adv. Funct. Mater.
21
,
2175
(
2011
).
6.
C. G.
Granqvist
,
Sol. Energy Mater. Sol. Cells
60
,
201
(
2000
).
7.
G. A.
Niklasson
and
C. G.
Granqvist
,
J. Mater. Chem.
17
,
127
(
2007
).
8.
Q.
Zhong
,
J. R.
Dahn
, and
K.
Colbow
,
Phys. Rev. B
46
,
2554
(
1992
).
9.
S.-H.
Lee
,
M. J.
Seong
,
H. M.
Cheong
,
E.
Ozkan
,
E. C.
Tracy
, and
S. K.
Deb
,
Solid State Ionics
156
,
447
(
2003
).
10.
R.-T.
Wen
,
C. G.
Granqvist
, and
G. A.
Niklasson
,
Nat. Mater.
14
,
996
(
2015
).
11.
K.
Qi
,
J.
Wei
,
M.
Sun
,
Q.
Huang
,
X.
Li
,
Z.
Xu
,
W.
Wang
, and
X.
Bai
,
Angew. Chem., Int. Ed.
54
,
15222
(
2015
).
12.
R.
Ramachandramoorthy
,
R.
Bernal
, and
H. D.
Espinosa
,
ACS Nano
9
,
4675
(
2015
).
13.
C.
Klinke
,
J. B.
Hannon
,
L.
Gignac
,
K.
Reuter
, and
P.
Avouris
,
J. Phys. Chem. B
109
,
17787
(
2005
).
14.
K. H.
Liu
,
W. L.
Wang
,
Z.
Xu
,
L.
Liao
,
X. D.
Bai
, and
E. G.
Wang
,
Appl. Phys. Lett.
89
,
221908
(
2006
).
15.
J.
Purans
,
A.
Kuzmin
,
P.
Parent
, and
C.
Laffon
,
Phys. B: Condens. Matter
259–261
,
1157
(
1999
).
16.
S.
Hashimoto
and
H.
Matsuoka
,
J. Appl. Phys.
69
,
933
(
1991
).
17.
J.
Purans
,
A.
Kuzmin
,
P.
Parent
, and
C.
Laffon
,
Electrochim. Acta
46
,
1973
(
2001
).
18.
Z.
Wang
,
M.
Gu
,
Y.
Zhou
,
X.
Zu
,
J. G.
Connell
,
J.
Xiao
,
D.
Perea
,
L. J.
Lauhon
,
J.
Bang
,
S.
Zhang
,
C.
Wang
, and
F.
Gao
,
Nano Lett.
13
,
4511
(
2013
).
19.
A.
Nie
,
L. Y.
Gan
,
Y.
Cheng
,
Q.
Li
,
Y.
Yuan
,
F.
Mashayek
,
H.
Wang
,
R.
Klie
,
U.
Schwingenschlogl
, and
R.
Shahbazian-Yassar
,
Nano Lett.
15
,
610
(
2015
).
20.
Y.
Zhang
,
Y.
Li
,
Z.
Wang
, and
K.
Zhao
,
Nano Lett.
14
,
7161
(
2014
).
21.
See supplementary material at http://dx.doi.org/10.1063/1.4950968 for Electron beam effect on pristine WO3 nanowire (Fig. S1) and time-lapse SAED patterns of a single partly lithiated WO3 nanowire (Fig. S2) and SAED scan of single partly lithiated WO3 nanowire (Movie S1) and lithiation process of a WO3 nanowire (Movie S2).

Supplementary Material

You do not currently have access to this content.