TiAlN/Ag multilayer coatings with a different number of bilayers and thicknesses of individual layers were fabricated by DC magnetron co-sputtering. Thermal conductivity was measured in dependence of Ag layer thickness. It was found anomalous low thermal conductivity of silver comparing to TiAlN and Ag bulk standards and TiAlN/TiN multilayers. The physical nature of such thermal barrier properties of the multilayer coatings was explained on the basis of reflection electron energy loss spectroscopy. The analysis shows that nanostructuring of the coating decreases the density of states and velocity of acoustic phonons propagation. At the same time, multiphonon channels of heat propagation degenerate. These results demonstrate that metal-dielectric interfaces in TiAlN/Ag coatings are insurmountable obstacles for acoustic phonons propagation.

1.
Y.
Tamarin
,
Protective Coatings for Turbine Blades
(
ASM International
,
2002
).
2.
D. R.
Clarke
,
M.
Oechsner
, and
N. P.
Padture
, “
Thermal-barrier coatings for more efficient gas-turbine engines
,”
MRS Bull.
37
,
891
898
(
2012
).
3.
K.
Yao
and
Y.
Liu
, “
Plasmonic metamaterials
,”
Nanotechnol. Rev.
3
,
177
210
(
2014
).
4.
J.
Chen
,
G.
Zhang
, and
B.
Li
, “
Impacts of atomistic coating on thermal conductivity of germanium nanowires
,”
Nano Lett.
12
,
2826−2832
(
2012
).
5.
X.
Shen
and
T. J.
Cui
, “
Planar plasmonic metamaterial on a thin film with nearly zero thickness
,”
Appl. Phys. Lett.
102
,
211909
(
2013
).
6.
A. I.
Kovalev
,
D. L.
Wainstein
,
A. Yu.
Rashkovskiy
,
R.
Gago
,
F.
Soldera
,
J. L.
Endrino
, and
G. S.
Fox-Rabinovich
, “
Interface-induced plasmon nonhomogeneity in nanostructured metal-dielectric planar metamaterial
,”
J. Nanomater.
2015
,
876247
.
7.
A.
Kovalev
,
D.
Wainstein
, and
A.
Rashkovskiy
, “
Investigation of anomalous physical properties of multilayer nanolaminate (TiAl)N/Cu coatings by electron spectroscopy techniques
,”
Surf. Interface Anal.
42
,
1361
1363
(
2010
).
8.
J.
Zou
and
A.
Balandin
, “
Development of an ab-initio model of the lattice thermal conductivity in semiconductor thin films and nanowires
,”
J. Appl. Phys.
89
,
2932
(
2001
).
9.
G.
Chen
,
R.
Yang
, and
X.
Chen
, “
Nanoscale heat transfer and thermal-electric energy conversion
,”
J. Phys. IV France
125
,
499
504
(
2005
).
10.
M. K.
Samani
,
X. Z.
Ding
,
N.
Khosravian
,
B.
Amin-Ahmadi
,
Y.
Yi
,
G.
Chen
,
E. C.
Neyts
,
A.
Bogaerts
, and
B. K.
Tay
, “
Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc
,”
Thin Solid Films
578
,
133
138
(
2015
).
11.
Z.
Cheng
,
L.
Liu
,
S.
Xu
,
M.
Lu
, and
X.
Wang
, “
Temperature dependence of electrical and thermal conduction in single silver nanowire
,”
Sci. Rep.
5
,
10718
(
2015
).
12.
X.
Wang
,
K. D.
Parrish
,
J. A.
Malen
, and
P. K. L.
Chan
, “
Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles
,”
Sci. Rep.
5
,
16095
(
2015
).
13.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
,
5119
5122
(
2004
).
14.
F.
Kargar
,
S.
Ramirez
,
B.
Debnath
,
H.
Malekpour
,
R.
Lake
, and
A. A.
Balandin
, “
Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
,”
Appl. Phys. Lett.
107
,
171904
(
2015
).
15.
T.
Gorishnyy
,
M.
Maldovan
,
C.
Ullal
, and
E.
Thomas
, “
Sound ideas
,”
Phys. World
18
(
12
),
24
29
(
2005
).
You do not currently have access to this content.