Analysis of photodepopulation of electron traps in HfO2 films grown by atomic layer deposition is shown to provide the trap energy distribution across the entire oxide bandgap. The presence is revealed of two kinds of deep electron traps energetically distributed at around Et ≈ 2.0 eV and Et ≈ 3.0 eV below the oxide conduction band. Comparison of the trapped electron energy distributions in HfO2 layers prepared using different precursors or subjected to thermal treatment suggests that these centers are intrinsic in origin. However, the common assumption that these would implicate O vacancies cannot explain the charging behavior of HfO2, suggesting that alternative defect models should be considered.

1.
R. D.
Clark
,
Materials
7
,
2913
(
2014
).
2.
J.
Robertson
and
R. M.
Wallace
,
Mater. Sci. Eng., R
88
,
1
(
2015
).
3.
G.
Molas
,
M.
Bocquet
,
E.
Vianello
,
L.
Perinola
,
H.
Grampeix
,
J. P.
Colonna
,
L.
Masarotto
,
F.
Martin
,
P.
Brainceau
,
M.
Gely
,
C.
Bongiorno
,
S.
Lombardo
,
G.
Pananakakis
,
G.
Gibaudo
, and
B.
De Salvo
,
Microelectron. Eng.
86
,
1796
(
2009
).
4.
L.
Breuil
,
J. G.
Lisoni
,
P.
Blomme
,
G.
Van den Bosch
, and
J.
Van Houdt
,
IEEE Electron Device Lett.
35
,
45
(
2014
).
5.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K.
Do Kim
,
J.
Muller
,
A.
Kersch
,
U.
Schroeder
,
T.
Mikolajick
, and
C. S.
Hwang
,
Adv. Mater.
27
,
1811
(
2015
).
6.
T. S.
Boscke
,
J.
Muller
,
D.
Brauhaus
,
U.
Schroeder
, and
U.
Bottiger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
7.
P.
Polakowski
and
J.
Muller
,
Appl. Phys. Lett.
106
,
232905
(
2015
).
8.
J.
Muller
,
P.
Polakowski
,
S.
Mueller
, and
T.
Mikolajick
,
ECS J. Solid State Sci. Technol.
4
,
N30
(
2015
).
9.
K.
Karda
,
A.
Jain
,
C.
Mouli
, and
M. A.
Alam
,
Appl. Phys. Lett.
106
,
163501
(
2015
).
10.
A.
Kerber
and
E. A.
Cartier
,
IEEE Trans. Device Mater. Reliab.
9
,
147
(
2009
).
11.
E.
Cartier
,
A.
Kerber
,
T.
Ando
,
M. M.
Frank
,
K.
Choi
,
S.
Krishnan
,
B.
Linder
,
K.
Zhao
,
F.
Monsieur
,
J.
Stathis
, and
V.
Narayanan
,
IEEE Int. Electron Devices Meet., Tech. Dig.
2011
,
441
.
12.
T.
Ando
,
Materials
5
,
478
(
2012
).
13.
D. P.
Ioannou
,
Microelectron. Reliab.
54
,
1489
(
2014
).
14.
B.
Govoreanu
,
R.
Degraeve
,
M. B.
Zahid
,
L.
Nyns
,
M.
Cho
,
B.
Kaczer
,
M.
Jurczak
,
J. A.
Kittl
, and
J.
Van Houdt
,
Microelectron. Eng.
86
,
1807
(
2009
).
15.
M. B.
Zahid
,
R.
Degraeve
,
L.
Breuil
,
P.
Blomme
,
J. G.
Lisoni
,
G.
Van den Bosch
,
J.
Van Houdt
, and
B. J.
Tang
, in
International Reliability Physics Symposium, 2014
, p.
2E.3
.
16.
J.
Muller
,
P.
Polakowski
,
S.
Mueller
, and
T.
Mikolajick
,
ECS Trans.
64
(
8
),
159
(
2014
).
17.
K.
Xiong
,
J.
Robertson
,
M. C.
Gibson
, and
S. J.
Clark
,
Appl. Phys. Lett.
87
,
183505
(
2005
).
18.
P.
Broqvist
and
A.
Pasquarello
,
Appl. Phys. Lett.
89
,
262904
(
2006
).
19.
D.
Muños Ramo
,
J. L.
Gavartin
,
A. L.
Shluger
, and
G.
Bersuker
,
Phys. Rev. B
75
,
205336
(
2007
).
20.
C.
Kaneta
and
T.
Yamasaki
,
Microelectron. Eng.
84
,
2370
(
2007
).
21.
C.
Tang
and
R.
Ramprasad
,
Phys. Rev. B
81
,
161201
(
2010
).
22.
V. V.
Afanas'ev
and
A.
Stesmans
,
J. Appl. Phys.
95
,
2518
(
2004
).
23.
A.
Stesmans
,
V. V.
Afanas'ev
,
F.
Chen
, and
S. A.
Campbell
,
Appl. Phys. Lett.
84
,
4574
(
2004
).
24.
V. V.
Afanas'ev
and
A.
Stesmans
,
Phys. Rev. B
59
,
2025
(
1999
).
25.
W. C.
Wang
,
M.
Badylevich
,
V. V.
Afanas'ev
,
A.
Stesmans
,
C.
Adelmann
,
S.
Van Elshocht
,
J. A.
Kittl
,
M.
Lukosius
,
Ch.
Walczyk
, and
Ch.
Wenger
,
Appl. Phys. Lett.
95
,
132903
(
2009
).
26.
V. V.
Afanas'ev
,
W. C.
Wang
,
F.
Cerbu
,
O.
Madia
,
M.
Houssa
, and
A.
Stesmans
,
ESC Trans.
64
(
8
),
17
(
2014
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4952718 for details of measurement procedure and calculations.
28.
E. E.
Hoppe
and
C. R.
Aita
,
Appl. Phys. Lett.
92
,
141912
(
2008
).
29.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
30.
D.
Vanderbilt
,
X.
Zhao
, and
D.
Ceresoli
,
Thin Solid Films
486
,
125
(
2005
).
31.
V. V.
Afanas'ev
,
A.
Stesmans
,
F.
Chen
,
X.
Shi
, and
S. A.
Campbell
,
Appl. Phys. Lett.
81
,
1053
(
2002
).
32.
V. V.
Afanas'ev
,
A.
Stesmans
, and
W.
Tsai
,
Appl. Phys. Lett.
82
,
245
(
2003
).
33.
V. V.
Afanas'ev
,
A.
Stesmans
,
L.
Pantisano
,
S.
Cimino
,
C.
Adelmann
,
L.
Goux
,
Y. Y.
Chen
,
J. A.
Kittl
,
D.
Wouters
, and
M.
Jurczak
,
Appl. Phys. Lett.
98
,
132901
(
2011
).
34.
N.
Hadacek
,
A.
Nosov
,
L.
Ranno
,
P.
Strobel
, and
R.-M.
Galera
,
J. Phys.: Condens. Matter
19
,
486206
(
2007
).
35.
E.
Hildebrandt
,
J.
Kurian
,
M. M.
Muller
,
T.
Schroeder
,
H.-J.
Kleebe
, and
L.
Alf
,
Appl. Phys. Lett.
99
,
112902
(
2011
).
36.
A. M.
El-Sayed
,
Y.
Wimmer
,
W.
Goes
,
T.
Grasser
,
V. V.
Afanas'ev
, and
A. L.
Shluger
,
Phys. Rev. B
92
,
014107
(
2015
).
37.
A. M.
El-Sayed
,
M. B.
Watkins
,
V. V.
Afanas'ev
, and
A. L.
Shluger
,
Phys. Rev. B
89
,
125201
(
2014
).

Supplementary Material

You do not currently have access to this content.