Li2S is the final product of lithiation of sulfur cathodes in lithium-sulfur (Li-S) batteries. In this work, we study formation and diffusion of defects in Li2S. It is found that for a wide range of voltages (referenced to metal Li) between 0.17 V and 2.01 V, positively charged interstitial Li (Li+) is the most favorable defect type with a fixed formation energy of 1.02 eV. The formation energy of negatively charged Li vacancy (VLi) is also constant, and it is only 0.13 eV higher than that of Li+. For a narrow range of voltages between 0.00 V and 0.17 V, the formation energy of neutral S vacancy is the lowest and it decreases with decreasing the cell voltage. The energy barrier for Li+ diffusion (0.45 eV), which takes place via an exchange mechanism, is 0.18 eV higher than that for VLi (0.27 eV), which takes place via a single vacancy hopping. Considering formation energies and diffusion barriers, we find that ionic conductivity in Li2S is due to both Li+ and VLi, but the latter mechanism being slightly more favorable.

1.
H.
Buschmann
,
J.
Dölle
,
S.
Berendts
,
A.
Kuhn
,
P.
Bottke
,
M.
Wilkening
,
P.
Heitjans
,
A.
Senyshyn
,
H.
Ehrenberg
,
A.
Lotnyk
,
V.
Duppel
,
L.
Kienle
, and
J.
Janek
, “
Structure and dynamics of the fast lithium ion conductor Li7La3Zr2O12
,”
Phys. Chem. Chem. Phys.
13
(
43
),
19378
19392
(
2011
).
2.
A.
Kuhn
,
S.
Narayanan
,
L.
Spencer
,
G.
Goward
,
V.
Thangadurai
, and
M.
Wilkening
, “
Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy
,”
Phys. Rev. B
83
,
094302
(
2011
).
3.
L. V.
Wüllen
,
T.
Echelmeyer
,
H. W.
Meyer
, and
D.
Wilmer
, “
The mechanism of Li-ion transport in the garnet Li5La3Nb2O12
,”
Phys. Chem. Chem. Phys.
9
,
3298
3303
(
2007
).
4.
S. P.
Ong
,
V. L.
Chevrier
,
G.
Hautier
,
A.
Jain
,
C.
Moore
,
S.
Kim
,
X.
Ma
, and
G.
Ceder
, “
Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
,”
Energy Environ. Sci.
4
(
9
),
3680
3688
(
2011
).
5.
H.
Xia
,
L.
Lu
, and
G.
Ceder
, “
Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition
,”
J. Power Sources
159
,
1422
1427
(
2006
).
6.
D.
Morgan
,
A.
Van der Ven
, and
G.
Ceder
, “
Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials
,”
Electrochem. Solid State Lett.
7
(
2
),
A30
A32
(
2004
).
7.
A.
Van der Ven
,
G.
Ceder
,
M.
Asta
, and
P. D.
Tepesch
, “
First-principles theory of ionic diffusion with nondilute carriers
,”
Phys. Rev. B
64
(
18
),
184307-1
184307-17
(
2001
).
8.
A.
Van der Ven
and
G.
Ceder
, “
Lithium diffusion mechanisms in layered intercalation compounds
,”
J. Power Sources
97–98
,
529
531
(
2001
).
9.
P.
Kaghazchi
, “
Phase-sensitivity of Li intercalation into Sn
,”
J. Phys.: Condens. Matter
25
(
38
),
382204
(
2013
).
10.
P.
Kaghazchi
, “
Mechanism of Li intercalation into Si
,”
Appl. Phys. Lett.
102
,
093901
(
2013
).
11.
E.
Lee
and
K. A.
Persson
, “
Li absorption and intercalation in single layer graphene and few layer graphene by first principles
,”
Nano Lett.
12
(
9
),
4624
4628
(
2012
).
12.
A.
Dunst
,
V.
Epp
,
I.
Hanzu
,
S. A.
Freunberger
, and
M.
Wilkening
, “
Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2 the discharge product in lithium-air batteries
,”
Energy Environ. Sci.
7
,
2739
2752
(
2014
).
13.
O.
Gerbig
,
R.
Merkle
, and
J.
Maier
, “
Electron and ion transport in Li2O2
,”
Adv. Mater.
25
,
3129
3133
(
2013
).
14.
S.
Shi
,
P.
Lu
,
Z.
Liu
,
Y.
Qi
,
L. G.
Hector
,
H.
Li
, and
S. J.
Harris
, “
Direct calculation of Li-ion transport in the solid electrolyte interphase
,”
J. Am. Chem. Soc.
134
,
15476
15487
(
2012
).
15.
A.
Moradabadi
and
P.
Kaghazchi
, “
Mechanism of Li intercalation/deintercalation into/from the surface of LiCoO2
,”
Phys. Chem. Chem. Phys.
17
,
22917
(
2015
).
16.
J.
Rohrer
,
A.
Moradabadi
,
K.
Albe
, and
P.
Kaghazchi
, “
On the origin of anisotropic lithiation of silicon
,”
J. Power Sources
293
,
221
227
(
2015
).
17.
T.
Zhang
,
D.
Li
,
Z.
Tao
, and
J.
Chen
, “
Understanding electrode materials of rechargeable lithium batteries via DFT calculations
,”
Prog. Nat. Sci.
23
(
3
),
256
272
(
2013
).
18.
A.
Van der Ven
and
G.
Ceder
, “
Lithium diffusion in layered LixCoO2
,”
Electrochem. Solid-State Lett.
3
,
301
(
2000
).
19.
D.
Kramer
and
G.
Ceder
, “
Tailoring the morphology of LiCoO2: A first principles study
,”
Chem. Mater.
21
,
3799
(
2009
).
20.
L. J.
Miara
,
S. P.
Ong
,
Y.
Mo
,
W. D.
Richards
,
Y.
Park
,
J. M.
Lee
,
H. S.
Lee
, and
G.
Ceder
, “
Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2xy(La3xRbx)(Zr2yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) superionic conductor: A first principles investigation
,”
Chem. Mater.
25
,
3048
3055
(
2013
).
21.
X.
Yu
,
W.
Xian-Ping
,
G.
Yun-Xia
,
H.
Jing
,
Z.
Zhong
,
G.
Li-Jun
,
F.
Qian-Feng
, and
L.
Chang-Song
, “
Correlation of lithium ionic diffusion with Nb concentration in Li7xLa3Zr2xNbxO12 evaluated by an internal friction method
,”
Chin. Phys. Lett.
31
(
1
),
016201
(
2014
).
22.
M.
Wagemaker
,
Structure and Dynamics of Lithium in Anatase TiO2
(
Delft University Press
,
2003
).
23.
L.
Chen
and
L. L.
Shaw
, “
Recent advances in lithium-sulfur batteries
,”
J. Power Sources
267
,
770
783
(
2014
).
24.
L.
Wang
,
Y.
Wang
, and
Y.
Xia
, “
A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte
,”
Energy Environ. Sci.
8
,
1551
(
2015
).
25.
Y.
Yang
,
G.
Zheng
, and
Y.
Cui
, “
Nanostructured sulfur cathodes
,”
Chem. Soc. Rev.
42
,
3018
(
2013
).
26.
K.
Kumaresan
,
Y.
Mikhaylik
, and
R. E.
White
, “
A mathematical model for a lithium-sulfur cell
,”
J. Electrochem. Soc.
155
,
A576
(
2008
).
27.
B.
Scrosati
,
J.
Hassoun
, and
Y. K.
Sun
, “
Lithium-ion batteries. A look into the future
,”
Energy Environ. Sci.
4
,
3287
(
2011
).
28.
P. G.
Bruce
,
S. A.
Freunberger
,
L. J.
Hardwick
, and
J. M.
Tarascon
, “
Li-O2 and Li-S batteries with high energy storage
,”
Nat. Mater.
11
,
19
(
2012
).
29.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
31.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 87th ed. (
CRC Press
,
2006
).
32.
C.
Freysoldt
,
J.
Neugebauer
, and
C. G.
Van de Walle
, “
Fully ab initio finite-size corrections for charged-defect supercell calculations
,”
Phys. Rev. Lett.
102
,
016402
(
2009
).
33.
C.
Freysoldt
,
J.
Neugebauer
, and
C. G.
Van de Walle
, “
Electrostatic interactions between charged defects in supercells
,”
Phys. Status Solidi B
248
,
1067
1076
(
2011
).
34.
H.
Khachai
,
R.
Khenata
,
A.
Bouhemadou
,
A.
Haddou
,
A. H.
Reshak
,
B.
Amrani
,
D.
Rached
, and
B.
Soudini
, “
FP-APW+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure
,”
J. Phys.: Condens. Matter
21
,
095404
(
2009
).
35.
R. D.
Eithiraj
,
G.
Jaiganesh
,
G.
Kalpana
, and
M.
Rajagopalan
, “
First-principles study of electronic structure and ground-state properties of alkali-metal sulfides - Li2S, Na2S, K2S and Rb2S
,”
Phys. Status Solidi B
244
,
1337
1346
(
2007
).
36.
R.
Xu
,
I.
Belharouak
,
X.
Zhang
,
R.
Chamoun
,
C.
Yu
,
Y.
Ren
,
A.
Nie
,
R.
Shahbazian-Yassar
,
J.
Lu
,
J. C. M.
Li
, and
K.
Amine
, “
Insight into sulfur reactions in Li-S batteries
,”
ACS Appl. Mater. Interfaces
6
,
21938
21945
(
2014
).
37.
D.
Bresser
,
S.
Passerini
, and
B.
Scrosati
, “
Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review
,”
Chem. Commun.
49
,
10545
10562
(
2013
).
38.
G. L.
Xu
,
Q.
Wang
,
J. C.
Fang
,
Y. F.
Xu
,
J. T.
Li
,
L.
Huanga
, and
S. G.
Sun
, “
Tuning the structure and property of nanostructured cathode materials of lithium ion and lithium sulfur batteries
,”
J. Mater. Chem. A
2
,
19941
19962
(
2014
).
You do not currently have access to this content.