An internal resonance based broadband vibration energy harvester is proposed by introducing an auxiliary oscillator to the main nonlinear harvesting oscillator. Compared to conventional nonlinear energy harvesters, the natural frequencies of this two-degree-of-freedom nonlinear system can be easily adjusted to be commensurable which will result in more resonant peaks and better wideband performance. Experimental measurements and equivalent circuit simulations demonstrate that this design outperforms its linear counterpart. In addition to the open-circuit voltage, the optimal resistance to obtain the maximum power is determined. Nearly 130% increase in the bandwidth is achieved compared to the linear counterpart at an excitation level of 2 m/s2. The findings provide insight for the design of a broadband energy harvester when there is nonlinearity and internal resonance.

1.
H. A.
Sodano
,
G.
Park
, and
D. J.
Inman
,
Strain
40
,
49
(
2004
).
2.
L.
Gammaitoni
,
I.
Neri
, and
H.
Vocca
,
Appl. Phys. Lett.
94
,
164102
(
2009
).
3.
A.
Erturk
and
D. J.
Inman
,
Piezoelectric Energy Harvesting
(
John Wiley & Sons
,
Atlanta
,
2011
).
4.
L. H.
Tang
and
Y. W.
Yang
,
Appl. Phys. Lett.
101
,
094102
(
2012
).
5.
J. Y.
Cao
,
S. X.
Zhou
, and
D. J.
Inman
,
Appl. Phys. Lett.
107
,
143904
(
2015
).
6.
S.
Roundy
and
Y.
Zhang
,
Proc. SPIE
5649
,
373
(
2005
).
7.
M.
Lallart
,
S. R.
Anton
, and
D. J.
Inman
,
J. Intell. Mater. Syst. Struct.
21
,
897
(
2010
).
8.
Q.
Ou
,
X. Q.
Chen
,
S.
Gutschmidt
,
A.
Wood
,
N.
Leigh
, and
A. F.
Arrieta
,
J. Intell. Mater. Syst. Struct.
23
,
117
(
2012
).
9.
M.
Arafa
,
W.
Akl
,
A.
Aladwani
,
O.
Aldrarihem
, and
A.
Baz
,
Proc. SPIE
7977
,
79770
Q (
2011
).
10.
S. M.
Shahruz
,
J. Sound Vib.
292
,
987
(
2006
).
11.
M.
Ferrari
,
V.
Ferrari
,
M.
Guizzrtti
,
D.
Marioli
, and
A.
Taroni
,
Sens. Actuators, A
142
,
329
(
2008
).
12.
A.
Aladwani
,
M.
Arafa
,
O.
Aldraihem
, and
A.
Baz
,
J. Vib. Acoust.
134
,
031004
(
2012
).
13.
H. L.
Liu
,
Z. Y.
Huang
,
T. Z.
Xu
, and
D. Y.
Chen
,
Smart Mater. Struct.
21
,
065004
(
2012
).
14.
A.
Erturk
,
J. M.
Renno
, and
D. J.
Inman
,
J. Intell. Mater. Syst. Struct.
20
,
529
(
2009
).
15.
L. H.
Tang
and
Y. W.
Yang
,
J. Intell. Mater. Syst. Struct.
23
,
1631
(
2012
).
16.
H.
Wu
,
L. H.
Tang
,
Y. W.
Yang
, and
C. K.
Soh
,
Jpn. J. Appl. Phys., Part 1
51
,
040211
(
2012
).
17.
A. F.
Arrieta
,
P.
Hagedorn
,
A.
Erturk
, and
D. J.
Inman
,
Appl. Phys. Lett.
97
,
104102
(
2010
).
18.
S. D.
Nguyen
and
E.
Halvorsen
,
J. Microelectromech. Syst.
20
,
1225
(
2011
).
19.
A.
Erturk
and
D. J.
Inman
,
J. Sound Vib.
330
,
2339
(
2011
).
20.
F.
Cottone
,
H.
Vocca
, and
L.
Gammaitoni
,
Phys. Rev. Lett.
102
,
080601
(
2009
).
21.
S. C.
Stanton
,
C. C.
McGehee
, and
B. P.
Mann
,
Appl. Phys. Lett.
95
,
174103
(
2009
).
22.
L. Q.
Chen
,
G. C.
Zhang
, and
H.
Ding
,
J. Sound Vib.
354
,
196
(
2015
).
23.
L. Q.
Chen
and
W. A.
Jiang
,
J. Appl. Mech.
82
,
031004
(
2015
).
24.
C. B.
Lan
,
W. Y.
Qin
, and
W. Z.
Deng
,
Appl. Phys. Lett.
107
,
093902
(
2015
).
25.
J.
Xu
and
J.
Tang
,
Appl. Phys. Lett.
107
,
213902
(
2015
).
26.
D. X.
Cao
,
S.
Leadenham
, and
A.
Erturk
,
Eur. Phys. J.-Spec. Top.
224
,
2867
(
2015
).
27.
E.
Engel
,
J. Y.
Wei
, and
C. L.
Lee
,
Proc. SPIE
9493
,
94930
Q (
2015
).
You do not currently have access to this content.