We report an anomalous liquid drop bouncing phenomenon that is generated by the Leidenfrost levitation due to a vapor layer reducing energy dissipation during the collision. The Leidenfrost levitation of water drops on both a hydrophobic surface and nanotextured Cassie surface is investigated. When the water drop is positioned onto the hydrophobic surface, a superhydrophobic feature is observed by the levitation effect due to the vapor film, which results in a slow evaporation of the drop due to the low thermal conductivity of the vapor layer that inhibits heat transfer between the heated surface and the water drop. In contrast, for the nanotextured surface, the water drop can bounce off after impact on the surface when it overcomes gravitational and adhesion forces. The spontaneous water drop bouncing on the nanotextured surface is powered by the combination effect of the Leidenfrost levitation and the non-wetting Cassie state.

1.
A.
Cassie
and
S.
Baxter
,
Trans. Faraday Soc.
40
,
546
(
1944
).
2.
H.-M.
Kwon
,
J. C.
Bird
, and
K. K.
Varanasi
,
Appl. Phys. Lett.
103
,
201601
(
2013
).
3.
A.
Lafuma
and
D.
Quéré
,
Nat. Mater.
2
,
457
(
2003
).
4.
T. N.
Krupenkin
,
J. A.
Taylor
,
E. N.
Wang
,
P.
Kolodner
,
M.
Hodes
, and
T. R.
Salamon
,
Langmuir
23
,
9128
(
2007
).
5.
E.
Bormashenko
,
R.
Pogreb
,
G.
Whyman
, and
M.
Erlich
,
Langmuir
23
,
12217
(
2007
).
6.
E.
Bormashenko
,
R.
Pogreb
,
G.
Whyman
, and
M.
Erlich
,
Langmuir
23
,
6501
(
2007
).
7.
L.
Feng
,
S.
Li
,
Y.
Li
,
H.
Li
,
L.
Zhang
,
J.
Zhai
,
Y.
Song
,
B.
Liu
,
L.
Jiang
, and
D.
Zhu
,
Adv. Mater.
14
,
1857
(
2002
).
8.
A. R.
Parker
and
C. R.
Lawrence
,
Nature
414
,
33
(
2001
).
9.
J. G.
Leidenfrost
,
Int. J. Heat Mass Transfer
9
,
1153
(
1966
).
10.
J. G.
Leidenfrost
,
De aquae communis nonnullis qualitatibus tractatus
(
Ovenius
,
1756
).
11.
A.
Hashmi
,
Y.
Xu
,
B.
Coder
,
P. A.
Osborne
,
J.
Spafford
,
G. E.
Michael
,
G.
Yu
, and
J.
Xu
,
Sci. Rep.
2
,
797
(
2012
).
12.
G.
Dupeux
,
P.
Bourrianne
,
Q.
Magdelaine
,
C.
Clanet
, and
D.
Quéré
,
Sci. Rep.
4
,
5280
(
2014
).
13.
G.
Dupeux
,
M.
Le Merrer
,
C.
Clanet
, and
D.
Quéré
,
Phys. Rev. Lett.
107
,
114503
(
2011
).
14.
C.
Kruse
,
I.
Somanas
,
T.
Anderson
,
C.
Wilson
,
C.
Zuhlke
,
D.
Alexander
,
G.
Gogos
, and
S.
Ndao
,
Microfluid. Nanofluid.
18
,
1417
(
2015
).
15.
G.
Lagubeau
,
M.
Le Merrer
,
C.
Clanet
, and
D.
Quéré
,
Nat. Phys.
7
,
395
(
2011
).
16.
H.
Linke
,
B.
Alemán
,
L.
Melling
,
M.
Taormina
,
M.
Francis
,
C.
Dow-Hygelund
,
V.
Narayanan
,
R.
Taylor
, and
A.
Stout
,
Phys. Rev. Lett.
96
,
154502
(
2006
).
17.
Y. S.
Song
,
D.
Adler
,
F.
Xu
,
E.
Kayaalp
,
A.
Nureddin
,
R. M.
Anchan
,
R. L.
Maas
, and
U.
Demirci
,
Proc. Natl. Acad. Sci.
107
,
4596
(
2010
).
18.
V.
Bertola
,
Int. J. Heat Mass Transfer
52
,
1786
(
2009
).
19.
B.
Gottfried
,
C.
Lee
, and
K.
Bell
,
Int. J. Heat Mass Transfer
9
,
1167
(
1966
).
20.
W.
Li
and
A.
Amirfazli
,
J. Colloid Interface Sci.
292
,
195
(
2005
).
21.
W.
Li
and
A.
Amirfazli
,
Adv. Colloid Interface Sci.
132
,
51
(
2007
).
22.
H.
Liu
,
H.
Zhang
, and
W.
Li
,
Langmuir
27
,
6260
(
2011
).
23.
D. J.
Lee
,
H. M.
Kim
,
Y. S.
Song
, and
J. R.
Youn
,
ACS Nano
6
,
7656
(
2012
).
24.
E.
Decker
,
B.
Frank
,
Y.
Suo
, and
S.
Garoff
,
Colloids Surf., A
156
,
177
(
1999
).
25.
T. N.
Krupenkin
,
J. A.
Taylor
,
T. M.
Schneider
, and
S.
Yang
,
Langmuir
20
,
3824
(
2004
).
26.
B.
Kong
and
X.
Yang
,
Langmuir
22
,
2065
(
2006
).
27.
A.-L.
Biance
,
C.
Clanet
, and
D.
Quéré
,
Phys. Fluids
15
,
1632
(
2003
).
You do not currently have access to this content.