Deep level defects are usually harmful to solar cells. Here we show that incorporation of selected deep level defects in the carrier-collecting region, however, can be utilized to improve the efficiency of optoelectronic devices. The designed defects can help the transport of the majority carriers by creating defect levels that are resonant with the band edge state, and/or reduce the concentration of minority carriers through Coulomb repulsion, thus suppressing the recombination at the carrier-collecting region. The selection process is demonstrated by using Si solar cell as an example. Our work enriches the understanding and utilization of the semiconductor defects.

1.
F.
Feldmann
,
M.
Bivour
,
C.
Reichel
,
M.
Hermle
, and
S. W.
Glunz
,
Sol. Energy Mater. Sol. Cells
120
,
270
(
2014
).
2.
B.
Nemeth
,
D. L.
Young
,
Y.
Hao-Chih
,
V.
LaSalvia
,
A. G.
Norman
,
M.
Page
,
B. G.
Lee
, and
P.
Stradins
, in
2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)
,
2014
.
3.
D. D.
Smith
,
P.
Cousins
,
S.
Westerberg
,
R.
De Jesus-Tabajonda
,
G.
Aniero
, and
S.
Yu-Chen
,
IEEE J. Photovoltaics
4
(
6
),
1465
(
2014
).
4.
J.
Benick
,
B.
Hoex
,
M. C. M.
van de Sanden
,
W. M. M.
Kessels
,
O.
Schultz
, and
S. W.
Glunz
,
Appl. Phys. Lett.
92
(
25
),
253504
(
2008
).
5.
S.
De Wolf
,
A.
Descoeudres
,
Z. C.
Holman
, and
C.
Ballif
,
Green
2
(
1
),
7
(
2012
).
6.
K.
Masuko
,
M.
Shigematsu
,
T.
Hashiguchi
,
D.
Fujishima
,
M.
Kai
,
N.
Yoshimura
,
T.
Yamaguchi
,
Y.
Ichihashi
,
T.
Mishima
,
N.
Matsubara
,
T.
Yamanishi
,
T.
Takahama
,
M.
Taguchi
,
E.
Maruyama
, and
S.
Okamoto
,
IEEE J. Photovoltaics
4
(
6
),
1433
(
2014
).
7.
F.
Feldmann
,
M.
Bivour
,
C.
Reichel
,
H.
Steinkemper
,
M.
Hermle
, and
S. W.
Glunz
,
Sol. Energy Mater. Sol. Cells
131
,
46
(
2014
).
8.
J. P.
Seif
,
A.
Descoeudres
,
M.
Filipič
,
F.
Smole
,
M.
Topič
,
Z. C.
Holman
,
S.
De Wolf
, and
C.
Ballif
,
J. Appl. Phys.
115
(
2
),
024502
(
2014
).
9.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
(
3
),
1758
(
1999
);
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
(
1994
).
10.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
(
1
),
558(R)
(
1993
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
(
16
),
11169
(
1996
).
11.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
12.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
,
J. Chem. Phys.
124
(
15
),
154709
(
2006
).
13.
S.-H.
Wei
,
Comput. Mater. Sci.
30
(
3–4),
337
(
2004
).
14.
E.
Bersch
,
S.
Rangan
,
R. A.
Bartynski
,
E.
Garfunkel
, and
E.
Vescovo
,
Phys. Rev. B
78
(
8
),
085114
(
2008
).
15.
S.-H.
Wei
and
S. B.
Zhang
,
Phys. Rev. B
66
(
15
),
155211
(
2002
).
16.
R.
Buczko
,
S. J.
Pennycook
, and
S. T.
Pantelides
,
Phys. Rev. Lett.
84
(
5
),
943
(
2000
).
17.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
(
2
),
021301
(
2013
).
18.
G.
Dingemans
and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
30
(
4
),
040802
(
2012
).
19.
V.
Naumann
,
M.
Otto
,
R. B.
Wehrspohn
,
M.
Werner
, and
C.
Hagendorf
,
Energy Procedia
27
,
312
(
2012
).
20.
S. W.
Lim
,
Y.
Shimogaki
,
Y.
Nakano
,
K.
Tada
, and
H.
Komiyama
,
Appl. Phys. Lett.
68
(
6
),
832
(
1996
);
D. R.
Denison
,
J. C.
Barbour
, and
J. H.
Burkhart
,
J. Vac. Sci. Technol. A
14
(
3
),
1124
(
1996
).
21.
C.
Reichel
,
F.
Feldmann
,
R.
Müller
,
R. C.
Reedy
,
B. G.
Lee
,
D. L.
Young
,
P.
Stradins
,
M.
Hermle
, and
S. W.
Glunz
,
J. Appl. Phys.
118
(
20
),
205701
(
2015
);
A. H.
van Ommen
,
J. Appl. Phys.
61
(
3
),
993
(
1987
).
22.
S.
Hu
,
M. R.
Shaner
,
J. A.
Beardslee
,
M.
Lichterman
,
B. S.
Brunschwig
, and
N. S.
Lewis
,
Science
344
(
6187
),
1005
(
2014
).
You do not currently have access to this content.