Magnetoelectric thin film composites have demonstrated their potential to detect sub-pT magnetic fields if mechanical resonances (typically few hundred Hz to a few kHz) are utilized. At low frequencies (1–100 Hz), magnetic field-induced frequency conversion has enabled wideband measurements with resonance-enhanced sensitivities by using the nonlinear characteristics of the magnetostriction curve. Nevertheless, the modulation with a magnetic field with a frequency close to the mechanical resonance results in a number of drawbacks, which are, e.g., size and energy consumption of the sensor as well as potential crosstalk in sensor arrays. In this work, we demonstrate the feasibility of an electric frequency conversion of a magnetoelectric sensor which would overcome the drawbacks of magnetic frequency conversion. This magnetoelectric sensor consists of three functional layers: an exchange biased magnetostrictive multilayer showing a high piezomagnetic coefficient without applying a magnetic bias field, a non-linear piezoelectric actuation layer and a linear piezoelectric sensing layer. In this approach, the low frequency magnetic signal is shifted into the mechanical resonance of the sensor, while the electric modulation frequency is chosen to be either the difference or the sum of the resonance and the signal frequency. Using this electric frequency conversion, a limit of detection in the low nT/Hz1/2 range was shown for signals of low frequency.

1.
S.
Marauska
,
R.
Jahns
,
H.
Greve
,
E.
Quandt
,
R.
Knöchel
, and
B.
Wagner
,
J. Micromech. Microeng.
22
,
65024
(
2012
).
2.
R.
Jahns
,
H.
Greve
,
E.
Woltermann
,
E.
Quandt
, and
R. H.
Knöchel
,
IEEE Trans. Instrum. Meas.
60
,
2995
(
2011
).
3.
C.-W.
Nan
,
M. I.
Bichurin
,
S.
Dong
,
D.
Viehland
, and
G.
Srinivasan
,
J. Appl. Phys.
103
,
31101
(
2008
).
4.
J.
Zhai
,
Z.
Xing
,
S.
Dong
,
J.
Li
, and
D.
Viehland
,
J. Am. Ceram. Soc.
91
,
351
(
2008
).
5.
H.
Greve
,
E.
Woltermann
,
H.-J.
Quenzer
,
B.
Wagner
, and
E.
Quandt
,
Appl. Phys. Lett.
96
,
182501
(
2010
).
6.
A.
Kulkarni
,
K.
Meurisch
,
I.
Teliban
,
R.
Jahns
,
T.
Strunskus
,
A.
Piorra
,
R.
Knöchel
, and
F.
Faupel
,
Appl. Phys. Lett.
104
,
22904
(
2014
).
7.
C.
Kirchhof
,
M.
Krantz
,
I.
Teliban
,
R.
Jahns
,
S.
Marauska
,
B.
Wagner
,
R.
Knöchel
,
M.
Gerken
,
D.
Meyners
, and
E.
Quandt
,
Appl. Phys. Lett.
102
,
232905
(
2013
).
8.
V.
Röbisch
,
E.
Yarar
,
N. O.
Urs
,
I.
Teliban
,
R.
Knöchel
,
J.
McCord
,
E.
Quandt
, and
D.
Meyners
,
J. Appl. Phys.
117
,
17B513
(
2015
).
9.
S.
Salzer
,
R.
Jahns
,
A.
Piorra
,
I.
Teliban
,
J.
Reermann
,
M.
Höft
,
E.
Quandt
, and
R.
Knöchel
,
Sens. Actuators A
237
,
91
(
2016
).
10.
E.
Lage
,
C.
Kirchhof
,
V.
Hrkac
,
L.
Kienle
,
R.
Jahns
,
R.
Knöchel
,
E.
Quandt
, and
D.
Meyners
,
Nat. Mater.
11
,
523
(
2012
).
11.
K.
Tadahiko
and
S.
Isao
, “
Self bias magnetostrictive material
,” Japanese patent 09083037 A (1997).
12.
S. K.
Mandal
,
G.
Sreenivasulu
,
V. M.
Petrov
, and
G.
Srinivasan
,
Appl. Phys. Lett.
96
,
192502
(
2010
).
13.
T.-D.
Onuta
,
Y.
Wang
,
C. J.
Long
, and
I.
Takeuchi
,
Appl. Phys. Lett.
99
,
203506
(
2011
).
14.
Y.
Zhou
,
D.
Maurya
,
Y.
Yan
,
G.
Srinivasan
,
E.
Quandt
, and
S.
Priya
,
Energy Harvesting Syst.
3
,
1
(
2016
).
15.
R.
Jahns
,
R.
Knöchel
,
H.
Greve
,
E.
Woltermann
,
E.
Lage
, and
E.
Quandt
, in
2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA)
(
2011
), pp.
107
110
.
16.
B.
Gojdka
,
R.
Jahns
,
K.
Meurisch
,
H.
Greve
,
R.
Adelung
,
E.
Quandt
,
R.
Knöchel
, and
F.
Faupel
,
Appl. Phys. Lett.
99
,
223502
(
2011
).
17.
T.
Nan
,
Y.
Hui
,
M.
Rinaldi
, and
N. X.
Sun
,
Sci. Rep.
3
,
1985
(
2013
).
18.
R.
Jahns
,
H.
Greve
,
E.
Woltermann
,
E.
Quandt
, and
R.
Knöchel
,
Sens. Actuators A
183
,
16
(
2012
).
19.
S. M.
Gillette
,
A. L.
Geiler
,
D.
Gray
,
D.
Viehland
,
C.
Vittoria
, and
V. G.
Harris
,
IEEE Magn. Lett.
2
,
2500104
(
2011
).
20.
S.
Zabel
,
C.
Kirchhof
,
E.
Yarar
,
D.
Meyners
,
E.
Quandt
, and
F.
Faupel
,
Appl. Phys. Lett.
107
,
152402
(
2015
).
21.
X.
Zhuang
,
M.
Lam Chok Sing
,
C.
Dolabdjian
,
Y.
Wang
,
P.
Finkel
,
J.
Li
, and
D.
Viehland
,
KEM
644
,
236
(
2015
).
22.
N. O.
Urs
,
I.
Teliban
,
A.
Piorra
,
R.
Knöchel
,
E.
Quandt
, and
J.
McCord
,
Appl. Phys. Lett.
105
,
202406
(
2014
).
23.
X.
Zhuang
,
M. L. C.
Sing
,
C.
Dolabdjian
,
Y.
Wang
,
P.
Finkel
,
J.
Li
, and
D.
Viehland
,
IEEE Trans. Magn.
51
,
1
(
2015
).
24.
X.
Zhuang
,
M. L. C.
Sing
, and
C.
Dolabdjian
,
IEEE Trans. Magn.
49
,
120
(
2013
).
25.
S.
Trolier-McKinstry
and
P.
Muralt
,
J. Electroceram.
12
,
7
(
2004
).
26.
Y. K.
Fetisov
,
V. M.
Petrov
, and
G.
Srinivasan
,
J. Mater. Res.
22
,
2074
(
2007
).
27.
J. L.
Hockel
,
T.
Wu
, and
G. P.
Carman
,
J. Appl. Phys.
109
,
64106
(
2011
).
28.
A.
Piorra
,
R.
Jahns
,
I.
Teliban
,
J. L.
Gugat
,
M.
Gerken
,
R.
Knöchel
, and
E.
Quandt
,
Appl. Phys. Lett.
103
,
32902
(
2013
).
29.
X.
Zhuang
,
M. L. C.
Sing
,
C.
Cordier
,
S.
Saez
,
C.
Dolabdjian
,
L.
Shen
,
J. F.
Li
,
M.
Li
, and
D.
Viehland
,
IEEE Sens. J.
11
,
2266
(
2011
).
30.
Y. K.
Fetisov
,
D. A.
Burdin
,
D. V.
Chashin
, and
N. A.
Ekonomov
,
IEEE Sens. J.
14
,
2252
(
2014
).
You do not currently have access to this content.