In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate the mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.

1.
M.
Xu
,
T.
Liang
,
M.
Shi
, and
H.
Chen
, “
Graphene-like two-dimensional materials
,”
Chem. Rev.
113
,
3766
3798
(
2013
).
2.
I.
Jo
,
M. T.
Pettes
,
J.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
Z.
Yao
, and
L.
Shi
, “
Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride
,”
Nano Lett.
13
,
550
554
(
2013
).
3.
H.
Zhou
,
J.
Zhu
,
Z.
Liu
,
Z.
Yan
,
X.
Fan
,
J.
Lin
,
G.
Wang
,
Q.
Yan
,
T.
Yu
,
P. M.
Ajayan
 et al., “
High thermal conductivity of suspended few-layer hexagonal boron nitride sheets
,”
Nano Res.
7
,
1232
1240
(
2014
).
4.
A.
Tabarraei
, “
Thermal conductivity of monolayer hexagonal boron nitride nanoribbons
,”
Comput. Mater. Sci.
108
,
66
71
(
2015
).
5.
Q.
Peng
,
W.
Ji
, and
S.
De
, “
Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study
,”
Comput. Mater. Sci.
56
,
11
17
(
2012
).
6.
A.
Tabarraei
and
X.
Wang
, “
A molecular dynamics study of nanofracture in monolayer boron nitride
,”
Mater. Sci. Eng., A
641
,
225
230
(
2015
).
7.
X.
Fan
,
Z.
Shen
,
A.
Liu
, and
J.-L.
Kuo
, “
Band gap opening of graphene by doping small boron nitride domains
,”
Nanoscale
4
,
2157
2165
(
2012
).
8.
Z.
Liu
,
L.
Ma
,
G.
Shi
,
W.
Zhou
,
Y.
Gong
,
S.
Lei
,
X.
Yang
,
J.
Zhang
,
J.
Yu
,
K. P.
Hackenberg
 et al., “
In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes
,”
Nat. Nanotechnol.
8
,
119
124
(
2013
).
9.
X.
Huang
,
S.
Wang
,
M.
Zhu
,
K.
Yang
,
P.
Jiang
,
Y.
Bando
,
D.
Golberg
, and
C.
Zhi
, “
Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization
,”
Nanotechnology
26
,
015705
(
2015
).
10.
W.
Yan
,
Y.
Zhang
,
H.
Sun
,
S.
Liu
,
Z.
Chi
,
X.
Chen
, and
J.
Xu
, “
Polyimide nanocomposites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation
,”
J. Mater. Chem. A
2
,
20958
20965
(
2014
).
11.
B.
Mortazavi
,
L. F. C.
Pereira
,
J.-W.
Jiang
, and
T.
Rabczuk
, “
Modelling heat conduction in polycrystalline hexagonal boron-nitride films
,”
Sci. Rep.
5
,
13228
(
2015
).
12.
R.
Picu
,
T.
Borca-Tasciuc
, and
M.
Pavel
, “
Strain and size effects on heat transport in nanostructures
,”
J. Appl. Phys.
93
,
3535
3539
(
2003
).
13.
S.
Bhowmick
and
V. B.
Shenoy
, “
Effect of strain on the thermal conductivity of solids
,”
J. Chem. Phys.
125
,
164513
(
2006
).
14.
R.
Ross
and
O.
Sandberg
, “
The thermal conductivity of four solid phases of NH4F, and a comparison with H2O
,”
J. Phys. C: Solid State Phys.
11
,
667
(
1978
).
15.
X.
Li
,
K.
Maute
,
M. L.
Dunn
, and
R.
Yang
, “
Strain effects on the thermal conductivity of nanostructures
,”
Phys. Rev. B
81
,
245318
(
2010
).
16.
K. D.
Parrish
,
A.
Jain
,
J. M.
Larkin
,
W. A.
Saidi
, and
A. J.
McGaughey
, “
Origins of thermal conductivity changes in strained crystals
,”
Phys. Rev. B
90
,
235201
(
2014
).
17.
M.
Hu
,
X.
Zhang
, and
D.
Poulikakos
, “
Anomalous thermal response of silicene to uniaxial stretching
,”
Phys. Rev. B
87
,
195417
(
2013
).
18.
L.
Lindsay
,
D.
Broido
, and
N.
Mingo
, “
Flexural phonons and thermal transport in graphene
,”
Phys. Rev. B
82
,
115427
(
2010
).
19.
L.
Lindsay
,
D.
Broido
, and
N.
Mingo
, “
Flexural phonons and thermal transport in multilayer graphene and graphite
,”
Phys. Rev. B
83
,
235428
(
2011
).
20.
T.
Feng
,
X.
Ruan
,
Z.
Ye
, and
B.
Cao
, “
Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration
,”
Phys. Rev. B
91
,
224301
(
2015
).
21.
L.
Chen
and
S.
Kumar
, “
Thermal transport in graphene supported on copper
,”
J. Appl. Phys.
112
,
043502
(
2012
).
22.
A.
Tabarraei
,
S.
Shadalou
, and
J.-H.
Song
, “
Mechanical properties of graphene nanoribbons with disordered edges
,”
Comput. Mater. Sci.
96
,
10
19
(
2015
).
23.
X.
Wang
,
A.
Tabarraei
, and
D. E.
Spearot
, “
Fracture mechanics of monolayer molybdenum disulfide
,”
Nanotechnology
26
,
175703
(
2015
).
24.
J.
Hu
,
X.
Ruan
, and
Y. P.
Chen
, “
Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study
,”
Nano Lett.
9
,
2730
2735
(
2009
).
25.
Q.
Pei
,
Y.
Zhang
, and
V.
Shenoy
, “
A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene
,”
Carbon
48
,
898
904
(
2010
).
26.
L.
Boldrin
,
F.
Scarpa
,
R.
Chowdhury
, and
S.
Adhikari
, “
Effective mechanical properties of hexagonal boron nitride nanosheets
,”
Nanotechnology
22
,
505702
(
2011
).
27.
F.
Müller-Plathe
, “
A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
,”
J. Chem. Phys.
106
,
6082
6085
(
1997
).
28.
See http://lammps.sandia.gov for more information about LAMMPS.
29.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
30.
J.
Tersoff
, “
New empirical approach for the structure and energy of covalent systems
,”
Phys. Rev. B
37
,
6991
(
1988
).
31.
C.
Sevik
,
A.
Kinaci
,
J. B.
Haskins
, and
T.
Çağin
, “
Characterization of thermal transport in low-dimensional boron nitride nanostructures
,”
Phys. Rev. B
84
,
085409
(
2011
).
32.
A.
Kinaci
,
J. B.
Haskins
,
C.
Sevik
, and
T.
Çağin
, “
Thermal conductivity of BN-C nanostructures
,”
Phys. Rev. B
86
,
115410
(
2012
).
33.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Energy gaps in graphene nanoribbons
,”
Phys. Rev. Lett.
97
,
216803
(
2006
).
34.
D.
Brenner
,
O.
Shenderova
,
J.
Harrison
,
S.
Stuart
,
B.
Ni
, and
S.
Sinnott
, “
A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons
,”
J. Phys.: Condens. Matter
14
,
783
802
(
2002
).
35.
Z.
Guo
,
D.
Zhang
, and
X.-G.
Gong
, “
Thermal conductivity of graphene nanoribbons
,”
Appl. Phys. Lett.
95
,
163103
(
2009
).
36.
N.
Wei
,
L.
Xu
,
H.-Q.
Wang
, and
J.-C.
Zheng
, “
Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility
,”
Nanotechnology
22
,
105705
(
2011
).
37.
M.
Alaghemandi
,
F.
Leroy
,
F.
Müller-Plathe
, and
M. C.
Böhm
, “
Thermal rectification in nanosized model systems: A molecular dynamics approach
,”
Phys. Rev. B
81
,
125410
(
2010
).
38.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
, “
The SIESTA method for ab initio order-n materials simulation
,”
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
39.
See http://www.icmab.es/siesta-joomla/ for more information about Siesta.
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
41.
N.
Troullier
and
J. L.
Martins
, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
,
1993
2006
(
1991
).
42.
L.
Kleinman
and
D. M.
Bylander
, “
Efficacious form for model pseudopotentials
,”
Phys. Rev. Lett.
48
,
1425
1428
(
1982
).
43.
E.
Artacho
,
E.
Anglada
,
O.
Diéguez
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
R. M.
Martin
,
P.
Ordejón
,
J. M.
Pruneda
,
D.
Sánchez-Portal
 et al., “
The SIESTA method: Developments and applicability
,”
J. Phys.: Condens. Matter
20
,
064208
(
2008
).
You do not currently have access to this content.