We measure basic network parameters of silver nanowire (AgNW) networks commonly used as transparent conducting electrodes in organic optoelectronic devices. By means of four point probing with nanoprobes, the wire-to-wire junction resistance and the resistance of single nanowires are measured. The resistance RNW of a single nanowire shows a value of RNW=(4.96±0.18)Ω/μm. The junction resistance RJ differs for annealed and non-annealed NW networks, exhibiting values of RJ=(25.2±1.9)Ω (annealed) and RJ=(529±239)Ω (non-annealed), respectively. Our simulation achieves a good agreement between the measured network parameters and the sheet resistance RS of the entire network. Extrapolating RJ to zero, our study show that we are close to the electrical limit of the conductivity of our AgNW system: We obtain a possible RS reduction by only 20% (common RS10Ω/sq). Therefore, we expect further performance improvements in AgNW systems mainly by increasing NW length or by utilizing novel network geometries.

1.
C. F.
Guo
and
Z.
Ren
,
Mater. Today
18
,
143
154
(
2015
).
2.
F.
Guo
,
X.
Zhu
,
K.
Forberich
,
J.
Krantz
,
T.
Stubhan
,
M.
Salinas
,
M.
Halik
,
S.
Spallek
,
B.
Butz
,
E.
Spiecker
,
T.
Ameri
,
N.
Li
,
P.
Kubis
,
D. M.
Guldi
,
G. J.
Matt
, and
C. J.
Brabec
,
Adv. Eng. Mater.
3
,
1062
1067
(
2013
).
3.
F.
Selzer
,
N.
Weiß
,
D.
Kneppe
,
L.
Bormann
,
C.
Sachse
,
N.
Gaponik
,
A.
Eychmüller
,
K.
Leo
, and
L.
Müller-Meskamp
,
Nanoscale
7
,
2777
2783
(
2015
).
4.
T.
Cheng
,
Y.
Zhang
,
W.-Y.
Lai
, and
W.
Huang
,
Adv. Mater.
27
,
3349
3376
(
2015
).
5.
F. C.
Krebs
,
H.
Spanggard
,
T.
Kjr
,
M.
Biancardo
, and
J.
Alstrup
,
Mater. Sci. Eng., B
138
,
106
111
(
2007
).
6.
M.
Niggemann
,
B.
Zimmermann
,
J.
Haschke
,
M.
Glatthaar
, and
A.
Gombert
,
Thin Solid Films
516
,
7181
7187
(
2008
).
7.
J.
Lee
,
I.
Lee
,
T.-S.
Kim
, and
Y.-J.
Lee
,
Small
9
,
2887
2894
(
2013
).
8.
T.
Tokuno
,
M.
Nogi
,
M.
Karakawa
,
J.
Jiu
,
T. T.
Nge
,
Y.
Aso
, and
K.
Suganuma
,
Nano Res.
4
,
1215
1222
(
2011
).
9.
L.
Hu
,
H. S.
Kim
,
J.-Y.
Lee
,
P.
Peumans
, and
Y.
Cui
,
ACS Nano
4
,
2955
2963
(
2010
).
10.
E. C.
Garnett
,
W.
Cai
,
J. J.
Cha
,
F.
Mahmood
,
S. T.
Connor
,
M.
Christoforo
,
Y.
Cui
,
M. D.
McGehee
, and
M. L.
Brongersma
,
Nat. Mater.
11
,
241
249
(
2012
).
11.
D. Y.
Choi
,
H. W.
Kang
,
H. J.
Sung
, and
S. S.
Kim
,
Nanoscale
5
,
977
983
(
2013
).
12.
J.-Y.
Lee
,
S. T.
Connor
,
Y.
Cui
, and
P.
Peumans
,
Nano Lett.
8
,
689
692
(
2008
).
13.
A.
Bid
,
A.
Bora
, and
A. K.
Raychaudhuri
,
Phys. Rev. B
74
,
035426
(
2006
).
14.
S.
De
,
P. J.
King
,
P. E.
Lyons
,
U.
Khan
, and
J. N.
Coleman
,
ACS Nano
4
,
7064
7072
(
2010
).
15.
B.
Han
,
Y.
Huang
,
R.
Li
,
Q.
Peng
,
J.
Luo
,
K.
Pei
,
A.
Herczynski
,
K.
Kempa
,
Z.
Ren
, and
J.
Gao
,
Nature Commun.
5
,
5674
(
2014
).
16.
C.-H.
Chung
,
T.-B.
Song
,
B.
Bob
,
R.
Zhu
, and
Y.
Yang
,
Nano Res.
5
,
805
814
(
2012
).
17.
N.
Weiß
,
L.
Müller-Meskamp
,
F.
Selzer
,
L.
Bormann
,
A.
Eychmüller
,
K.
Leo
, and
N.
Gaponik
,
R. Soc. Chem. Adv.
5
,
19659
19665
(
2015
).
18.
F.
Selzer
,
N.
Weiß
,
L.
Bormann
,
C.
Sachse
,
N.
Gaponik
,
L.
Müller-Meskamp
,
A.
Eychmüller
, and
K.
Leo
,
Org. Electron.
15
,
3818
3824
(
2014
).
You do not currently have access to this content.