We have developed a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam. The system enables the resistivity of carbon nanocoils (CNCs) to be measured and its dependence on coil geometry to be elucidated. At room temperature, the resistivity of CNCs tended to increase with coil diameter, while that of artificially graphitized CNCs remained constant. These contrasting behaviors indicate coil-diameter-induced enhancement in structural disorder internal to CNCs. Low-temperature resistivity measurements performed on the CNCs revealed that electron transport through the helical axis is governed by the variable range hopping mechanism. The characteristic temperature in variable range hopping theory was found to systematically increase with coil diameter, which supports our theory that the population of sp2-domains in CNCs decreases considerably with coil diameter.

1.
H.
Shima
and
Y.
Suda
, “
Mechanics of helical carbon nanomaterials
,” in
Advanced Computational Nanomechanics
, edited by
N.
Silvestre
(
Wiley
,
2016
).
2.
R. T. K.
Baker
,
P. S.
Harris
, and
S.
Terry
,
Nature
253
,
37
(
1975
).
3.
M.
Yokota
,
Y.
Hosokawa
,
Y.
Shinohara
,
T.
Kawabata
,
K.
Takimoto
,
Y.
Suda
,
S.
Oke
,
H.
Takikawa
,
Y.
Fujimura
,
T.
Yamaura
,
S.
Itoh
,
H.
Ue
, and
M.
Morioki
,
J. Nanosci. Nanotechnol.
10
,
3910
(
2010
).
4.
L. J.
Pan
,
M.
Zhang
, and
Y.
Nakayama
,
J. Appl. Phys.
91
,
10058
(
2002
).
5.
P. R.
Bandaru
,
C.
Daraio
,
K.
Yang
, and
A. M.
Rao
,
J. Appl. Phys.
101
,
094307
(
2007
).
6.
D. W.
Li
,
L. J.
Pan
,
D. P.
Liu
, and
N. S.
Yu
,
Chem. Vap. Deposition
16
,
166
(
2010
).
7.
N. J.
Tang
,
W.
Zhong
,
C. T.
Au
,
Y.
Yang
,
M. G.
Han
,
K. J.
Lin
, and
Y. W.
Du
,
J. Phys. Chem. C
112
,
19316
(
2008
).
8.
T.
Hyeon
,
S.
Han
,
Y. E.
Sung
,
K. W.
Park
, and
Y. W.
Kim
,
Angew. Chem., Int. Ed.
42
,
4352
(
2003
).
9.
Y.
Shimizu
,
Y.
Suda
,
H.
Takikawa
,
H.
Ue
,
K.
Shimizu
, and
Y.
Umeda
,
Electrochemistry
83
,
381
(
2015
).
10.
X. Q.
Chen
,
S. L.
Zhang
,
D. A.
Dikin
,
W. Q.
Ding
,
R. S.
Ruoff
,
L. J.
Pan
, and
Y.
Nakayama
,
Nano Lett.
3
,
1299
(
2003
).
11.
T.
Yonemura
,
Y.
Suda
,
H.
Tanoue
,
H.
Takikawa
,
H.
Ue
,
K.
Shimizu
, and
Y.
Umeda
,
J. Appl. Phys.
112
,
084311
(
2012
).
12.
T.
Yonemura
,
Y.
Suda
,
H.
Shima
,
Y.
Nakamura
,
H.
Tanoue
,
H.
Takikawa
,
H.
Ue
,
K.
Shimizu
, and
Y.
Umeda
,
Carbon
83
,
183
(
2015
).
13.
T.
Hayashida
,
L.
Pan
, and
Y.
Nakayama
,
Physica B
323
,
352
(
2002
).
14.
H. S.
Chiu
,
P. I.
Lin
,
H. C.
Wu
,
W. H.
Hsieh
,
C. D.
Chen
, and
Y. T.
Chen
,
Carbon
47
,
1761
(
2009
).
15.
N. J.
Tang
,
W.
Kuo
,
C. C.
Jeng
,
L. Y.
Wang
,
K. J.
Lin
, and
Y. W.
Du
,
ACS Nano
4
,
781
(
2010
).
16.
H.
Ma
,
K.
Nakata
,
L. J.
Pan
,
K.
Hirahara
, and
Y.
Nakayama
,
Carbon
73
,
71
(
2014
).
17.
J. Y.
Shen
,
Z. J.
Chen
,
N. L.
Wang
,
W. J.
Li
, and
L. J.
Chen
,
Appl. Phys. Lett.
89
,
153132
(
2006
).
18.
Y.
Sun
,
C.
Wang
,
L.
Pan
,
X.
Fu
,
P.
Yin
, and
H.
Zou
,
Carbon
98
,
285
(
2016
).
19.
See supplementary materials at http://dx.doi.org/10.1063/1.4945724 for a description of the sample preparation, Raman analysis, experimental details, and configuration of the measurement samples.
20.
K.
Kaneto
,
M.
Tsuruta
, and
S.
Motojima
,
Synth. Met.
103
,
2578
(
1999
).
21.
N. F.
Mott
and
E. A.
Davis
,
Electronic Processes in Noncrystalline Materials
, 2nd ed. (
Oxford University Press
,
Oxford
,
1979
), p.
32
.
22.
A. W. P.
Fung
,
A. M.
Rao
,
K.
Kuriyama
,
M. S.
Dresselhaus
,
G.
Dresselhaus
,
M.
Endo
, and
N.
Shindo
,
J. Mater. Res.
8
,
489
(
1993
).

Supplementary Material

You do not currently have access to this content.