In this paper, a method for realizing a low driving voltage electroabsorption modulator based on the band-filling effect is demonstrated. The InP-based electroabsorption modulator is integrated using divinylsiloxane-bis-benzocyclobutene adhesive bonding on a silicon-on-insulator waveguide platform. When the electroabsorption modulator is forward biased, the band-filling effect occurs, which leads to a blue shift of the exciton absorption spectrum, while the absorption strength stays almost constant. In static operation, an extinction ratio of more than 20 dB with 100 mV bias variation is obtained in an 80 μm long device. In dynamic operation, 1.25 Gbps modulation with a 6.3 dB extinction ratio is obtained using only a 50 mV peak-to-peak driving voltage. The band-filling effect provides a method for realizing ultra-low-driving-voltage electroabsorption modulators.

1.
Y.
Tang
,
J. D.
Peters
, and
J. E.
Bowers
,
IEEE Photonics Technol. Lett.
24
,
1689
(
2012
).
2.
H.
Fukano
,
T.
Yamanaka
,
M.
Tamura
, and
T.
Kondo
,
J. Lightwave Technol.
24
,
2219
(
2006
).
3.
R. B.
Welstand
,
S. A.
Pappert
,
C. K.
Sun
,
J. T.
Zhu
,
Y. Z.
Liu
, and
P. K. L.
Yu
,
IEEE Photonics Technol. Lett.
8
,
1540
(
1996
).
4.
K.
Chen
,
Q.
Huang
,
J.
Zhang
,
J.
Cheng
,
X.
Fu
,
C.
Zhang
,
K.
Ma
,
Y.
Shi
,
D. V.
Thourhout
,
G.
Roelkens
 et al.,
IEEE Photonics J.
8
,
1
(
2016
).
5.
P.
Zhou
,
S.
Pan
,
D.
Zhu
,
R.
Guo
,
F.
Zhang
, and
Y.
Zhao
,
IEEE Photonics Technol. Lett.
26
,
86
(
2014
).
6.
D.
Marpaung
,
C.
Roeloffzen
,
R.
Heideman
,
A.
Leinse
,
S.
Sales
, and
J.
Capmany
,
Laser Photonics Rev.
7
,
506
(
2013
).
7.
C.
Sun
,
M. T.
Wade
,
Y.
Lee
,
J. S.
Orcutt
,
L.
Alloatti
,
M. S.
Georgas
,
A. S.
Waterman
,
J. M.
Shainline
,
R. R.
Avizienis
,
S.
Lin
 et al.,
Nature
528
,
534
(
2015
).
8.
G.
Roelkens
,
A.
Abassi
,
P.
Cardile
,
U.
Dave
,
A.
De Groote
,
Y.
de Koninck
,
S.
Dhoore
,
X.
Fu
,
A.
Gassenq
,
N.
Hattasan
 et al.,
Photonics
2
,
969
(
2015
).
9.
X.
Fu
,
J.
Cheng
,
Q.
Huang
,
Y.
Hu
,
W.
Xie
,
M.
Tassaert
,
J.
Verbist
,
K.
Ma
,
J.
Zhang
,
K.
Chen
 et al.,
Opt. Express
23
,
18686
(
2015
).
10.
S.
Manipatruni
,
K.
Preston
,
L.
Chen
, and
M.
Lipson
,
Opt. Express
18
,
18235
(
2010
).
11.
A.
Shakoor
,
K.
Nozaki
,
E.
Kuramochi
,
K.
Nishiguchi
,
A.
Shinya
, and
M.
Notomi
,
Advanced Photonics for Communications
(
Optical Society of America
,
San Diego, California United States
,
2014
), p.
IW3A.6
.
12.
X.
Gu
,
S.
Shimizu
,
T.
Shimada
,
A.
Matsutani
, and
F.
Koyama
,
Appl. Phys. Lett.
102
,
031118
(
2013
).
13.
G.
Livescu
,
D. A.
Miller
,
D.
Chemla
,
M.
Ramaswamy
,
T.
Chang
,
N.
Sauer
,
A.
Gossard
, and
J.
English
,
IEEE J. Quantum Electron.
24
,
1677
(
1988
).
14.
Y.
Ikku
,
M.
Yokoyama
,
O.
Ichikawa
,
M.
Hata
,
M.
Takenaka
, and
S.
Takagi
,
Opt. Express
20
,
B357
(
2012
).
15.
T.
Chang
,
J.
Zucker
,
K.
Jones
,
N.
Sauer
,
B.
Tell
,
M.
Wegener
, and
D.
Chemla
, in
Second International Conference on Indium Phosphide and Related Materials, 1990
(
IEEE
,
1990
), pp.
447
448
.
16.
V. S.
Kalinovsky
,
T. V.
Shubina
,
I. Yu.
Shvechikov
, and
A. A.
Toropov
,
J. Phys. III France
3
,
1021
(
1993
).
17.
See http://www.epixfab.eu/ for more information about ePIXfab Multi Project Wafer run; accessed 5 January 2015 (last accessed 28 January
2016
).
18.
Q.
Huang
,
J.
Cheng
,
L.
Liu
,
Y.
Tang
, and
S.
He
,
Appl. Opt.
54
,
4327
(
2015
).
19.
P. J.
Mares
and
S. L.
Chuang
,
J. Appl. Phys.
74
,
1388
(
1993
).
21.
L. A.
Coldren
and
S. W.
Corzine
,
Diode Lasers and Photonic Integrated Circuits
, 1st ed. (
John Wiley & Sons, Inc.
,
New York
,
1995
), Chap. 7, pp.
414
415
.
You do not currently have access to this content.