The electrical properties of ZrO2 and HfO2 gate dielectrics on n-InAs were evaluated. Particularly, an in situ surface treatment method including cyclic nitrogen plasma and trimethylaluminum pulses was used to improve the quality of the high-κ oxides. The quality of the InAs-oxide interface was evaluated with a full equivalent circuit model developed for narrow band gap metal-oxide-semiconductor (MOS) capacitors. Capacitance–voltage (C–V) measurements exhibit a total trap density profile with a minimum of 1 × 1012 cm−2 eV−1 and 4 × 1012 cm−2 eV−1 for ZrO2 and HfO2, respectively, both of which are comparable to the best values reported for high-κ/III-V devices. Our simulations showed that the measured capacitance is to a large extent affected by the border trap response suggesting a very low density of interface traps. Charge trapping in MOS structures was also investigated using the hysteresis in the C–V measurements. The experimental results demonstrated that the magnitude of the hysteresis increases with increase in accumulation voltage, indicating an increase in the charge trapping response.

1.
H.
Wong
and
H.
Iwai
,
Microelectron. Eng.
83
(
10
),
1867
1904
(
2006
).
2.
H.
Riel
,
L.-E.
Wernersson
,
M.
Hong
, and
J. A.
del Alamo
,
MRS Bull.
39
(
8
),
668
677
(
2014
).
3.
G. D.
Wilk
,
R. M.
Wallace
, and
J.
Anthony
,
J. Appl. Phys.
89
(
10
),
5243
5275
(
2001
).
4.
H.
Wong
and
H.
Iwai
,
Microelectron. Eng.
138
,
57
76
(
2015
).
5.
K.
Takei
,
R.
Kapadia
,
H.
Fang
,
E.
Plis
,
S.
Krishna
, and
A.
Javey
,
Appl. Phys. Lett.
102
(
15
),
153513
(
2013
).
6.
C. H.
Wang
,
G.
Doornbos
,
G.
Astromskas
,
G.
Vellianitis
,
R.
Oxland
,
M. C.
Holland
,
M. L.
Huang
,
C. H.
Lin
,
C. H.
Hsieh
,
Y. S.
Chang
,
T. L.
Lee
,
Y. Y.
Chen
,
P.
Ramvall
,
E.
Lind
,
W. C.
Hsu
,
L.-E.
Wernersson
,
R.
Droopad
,
M.
Passlack
, and
C. H.
Diaz
,
AIP Adv.
4
(
4
),
047108
(
2014
).
7.
S.
Johansson
,
E.
Memisevic
,
L.-E.
Wernersson
, and
E.
Lind
,
IEEE Electron Device Lett.
35
(
5
),
518
520
(
2014
).
8.
K.-M.
Persson
,
M.
Berg
,
H.
Sjöland
,
E.
Lind
, and
L.-E.
Wernersson
,
Electron. Lett.
50
(
9
),
682
683
(
2014
).
9.
E.
Lind
,
Y.-M.
Niquet
,
H.
Mera
, and
L.-E.
Wernersson
,
Appl. Phys. Lett.
96
(
23
),
233507
(
2010
).
10.
A.
Babadi
,
E.
Lind
, and
L.-E.
Wernersson
,
J. Appl. Phys.
116
(
21
),
214508
(
2014
).
11.
A.
Kirk
,
M.
Milojevic
,
J.
Kim
, and
R.
Wallace
,
Appl. Phys. Lett.
96
(
20
),
202905
(
2010
).
12.
D.
Zhernokletov
,
P.
Laukkanen
,
H.
Dong
,
R.
Galatage
,
B.
Brennan
,
M.
Yakimov
,
V.
Tokranov
,
J.
Kim
,
S.
Oktyabrsky
, and
R.
Wallace
,
Appl. Phys. Lett.
102
(
21
),
211601
(
2013
).
13.
H.-Y.
Lin
,
S.-L.
Wu
,
C.-C.
Cheng
,
C.-H.
Ko
,
C. H.
Wann
,
Y.-R.
Lin
,
S.-J.
Chang
, and
T.-B.
Wu
,
Appl. Phys. Lett.
98
,
123509
(
2011
).
14.
F.
Capasso
and
G. F.
Williams
,
J. Electrochem. Soc.
129
(
4
),
821
824
(
1982
).
15.
A.
Callegari
,
P.
Hoh
,
D.
Buchanan
, and
D.
Lacey
,
Appl. Phys. Lett.
54
(
4
),
332
334
(
1989
).
16.
J. S.
Herman
and
F. L.
Terry
,
J. Vac. Sci. Technol., A
11
(
4
),
1094
1098
(
1993
).
17.
V.
Chobpattana
,
J.
Son
,
J. J.
Law
,
R.
Engel-Herbert
,
C.-Y.
Huang
, and
S.
Stemmer
,
Appl. Phys. Lett.
102
(
2
),
022907
(
2013
).
18.
V.
Chobpattana
,
T. E.
Mates
,
J. Y.
Zhang
, and
S.
Stemmer
,
Appl. Phys. Lett.
104
(
18
),
182912
(
2014
).
19.
Y.
Taur
,
H.-P.
Chen
,
Q.
Xie
,
J.
Ahn
,
P. C.
McIntyre
,
D.
Lin
,
A.
Vais
, and
D.
Veksler
,
IEEE Trans. Electron Devices
62
(
3
),
813
820
(
2015
).
20.
C. H.
Wang
,
S. W.
Wang
,
G.
Doornbos
,
G.
Astromskas
,
K.
Bhuwalka
,
R.
Contreras-Guerrero
,
M.
Edirisooriya
,
J. S.
Rojas-Ramirez
,
G.
Vellianitis
,
R.
Oxland
,
M. C.
Holland
,
C. H.
Hsieh
,
P.
Ramvall
,
E.
Lind
,
W. C.
Hsu
,
L.-E.
Wernersson
,
R.
Droopad
,
M.
Passlack
, and
C. H.
Diaz
,
Appl. Phys. Lett.
103
(
14
),
143510
(
2013
).
21.
Y.
Yuan
,
B.
Yu
,
J.
Ahn
,
P. C.
McIntyre
,
P. M.
Asbeck
,
M. J.
Rodwell
, and
Y.
Taur
,
IEEE Trans. Electron Devices
59
(
8
),
2100
2106
(
2012
).
22.
F. P.
Heiman
and
G.
Warfield
,
IEEE Trans. Electron Devices
12
(
4
),
167
178
(
1965
).
23.
Y.
Yuan
,
L.
Wang
,
B.
Yu
,
B.
Shin
,
J.
Ahn
,
P. C.
McIntyre
,
P. M.
Asbeck
,
M. J.
Rodwell
, and
Y.
Taur
,
IEEE Electron Device Lett.
32
(
4
),
485
487
(
2011
).
24.
E. H.
Nicollian
,
J. R.
Brews
, and
E. H.
Nicollian
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley
,
New York
,
1982
).
25.
G.
Brammertz
,
A.
Alian
,
D. H. C.
Lin
,
M.
Meuris
,
M.
Caymax
, and
W. E.
Wang
,
IEEE Trans. Electron Devices
58
(
11
),
3890
3897
(
2011
).
26.
R.
Engel-Herbert
,
Y.
Hwang
, and
S.
Stemmer
,
J. Appl. Phys.
108
(
12
),
124101
(
2010
).
27.
X.
Zhao
,
D.
Ceresoli
, and
D.
Vanderbilt
,
Phys. Rev. B
71
(
8
),
085107
(
2005
).
28.
L.
Koltunski
and
R.
Devine
,
Appl. Phys. Lett.
79
(
3
),
320
322
(
2001
).
29.
T. P.
O'Regan
,
P. K.
Hurley
,
B.
Sorée
, and
M. V.
Fischetti
,
Appl. Phys. Lett.
96
(
21
),
213514
(
2010
).
30.
T. P.
O'Regan
and
P. K.
Hurley
,
Appl. Phys. Lett.
99
(
16
),
163502
(
2011
).
31.
J.
Lin
,
Y. Y.
Gomeniuk
,
S.
Monaghan
,
I. M.
Povey
,
K.
Cherkaoui
,
É.
O'Connor
,
M.
Power
, and
P. K.
Hurley
,
J. Appl. Phys.
114
(
14
),
144105
(
2013
).
You do not currently have access to this content.