Scanning spreading resistance microscopy (SSRM) was performed on non-intentionally doped (nid) ZnO nanowires (NWs) grown by metal-organic chemical vapor deposition in order to measure their residual carrier concentration. For this purpose, an SSRM calibration profile has been developed on homoepitaxial ZnO:Ga multilayer staircase structures grown by molecular beam epitaxy. The Ga density measured by SIMS varies in the 1.7 × 1017 cm−3 to 3 × 1020 cm−3 range. From measurements on such Ga doped multi-layers, a monotonic decrease in SSRM resistance with increasing Ga density was established, indicating SSRM being a well-adapted technique for two dimensional dopant/carrier profiling on ZnO at nanoscale. Finally, relevant SSRM signal contrasts were detected on nid ZnO NWs, and the residual carrier concentration is estimated in the 1–3 × 1018 cm−3 range, in agreement with the result from four-probe measurements.

1.
Z. L.
Wang
,
J. Phys.: Condens. Matter
16
,
R829
(
2004
).
2.
D.
Vanmaekelbergh
and
L. K.
van Vugt
,
Nanoscale
3
,
2783
(
2011
).
3.
C.
Soci
,
A.
Zhang
,
B.
Xiang
,
S. A.
Dayeh
,
D. P. R.
Aplin
,
J.
Park
,
X. Y.
Bao
,
Y. H.
Lo
, and
D.
Wang
,
Nano Lett.
7
,
1003
(
2007
).
4.
P.-C.
Chang
,
Z.
Fan
,
C.-J.
Chien
,
D.
Stichtenoth
,
C.
Ronning
, and
J. G.
Lu
,
Appl. Phys. Lett.
89
,
133113
(
2006
).
5.
Z.
Fan
,
D.
Wang
,
P.-C.
Chang
,
W.-Y.
Tseng
, and
J. G.
Lu
,
Appl. Phys. Lett.
85
,
5923
(
2004
).
6.
R.
Holm
,
Electric Contacts: Theory and Application
(
Springer
,
Berlin
,
1979
), pp.
11
16
.
7.
Y. V.
Sharvin
,
Sov. Phys. JETP
21
,
655
(
1965
).
8.
P.
De Wolf
,
R.
Stephenson
,
T.
Trenkler
,
T.
Clarysse
,
T.
Hantschel
, and
W.
Vandervorst
,
J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.
18
,
361
(
2000
).
9.
D.
Álvarez
,
J.
Hartwich
,
M.
Fouchier
,
P.
Eyben
, and
W.
Vandervorst
,
Appl. Phys. Lett.
82
,
1724
(
2003
).
10.
L.
Zhang
,
H.
Tanimoto
,
K.
Adachi
, and
A.
Nishiyama
,
IEEE Electron Device Lett.
29
,
799
(
2008
).
11.
T.
Hantschel
,
C.
Demeulemeester
,
P.
Eyben
,
V.
Schulz
,
O.
Richard
,
H.
Bender
, and
W.
Vandervorst
,
Phys. Status Solidi A
206
,
2077
(
2009
).
12.
P.
Eyben
,
M.
Xu
,
N.
Duhayon
,
T.
Clarysse
,
S.
Callewaert
, and
W.
Vandervorst
,
J. Vac. Sci. Technol. B
20
,
471
(
2002
).
13.
X.
Ou
,
P.
Das Kanungo
,
R.
Kögler
,
P.
Werner
,
U.
Gösele
,
W.
Skorupa
, and
X.
Wang
,
Nano Lett.
10
,
171
(
2010
).
14.
A.
Schulze
,
A. S.
Verhulst
,
A.
Nazir
,
T.
Hantschel
,
P.
Eyben
, and
W.
Vandervorst
,
J. Appl. Phys.
113
,
114310
(
2013
).
15.
F.
Giannazzo
,
V.
Raineri1
,
S.
Mirabella
,
G.
Impellizzeri
, and
F.
Priolo
,
Appl. Phys. Lett.
88
,
043117
(
2006
).
16.
P.
De Wolf
,
M.
Geva
,
T.
Hantschel
,
W.
Vandervorst
, and
R. B.
Bylsma
,
Appl. Phys. Lett.
73
,
2155
(
1998
).
17.
R. P.
Lu
,
K. L.
Kavanagh
,
S. J.
Dixon-Warren
,
A.
Kuhl
,
A. J.
SpringThorpe
,
E.
Griswold
,
G.
Hillier
,
I.
Calder
,
R.
Arés
, and
R.
Streater
,
J. Vac. Sci. Technol. B
19
,
1662
(
2001
).
18.
I. S.
Fraser
,
R. A.
Oliver
,
J.
Sumner
,
C.
McAleese
,
M. J.
Kappers
, and
C. J.
Humphreys
,
Appl. Surf. Sci.
253
,
3937
(
2007
).
19.
M.-T.
Chen
,
M.-P.
Lu
,
Y.-J.
Wu
,
J.
Song
,
C.-Y.
Lee
,
M.-Y.
Lu
,
Y.-C.
Chang
,
L.-J.
Chou
,
Z. L.
Wang
, and
L.-J.
Chen
,
Nano Lett.
10
,
4387
(
2010
).
20.
M.
Lorenz
,
B.
Cao
,
G.
Zimmermann
,
G.
Biehne
,
C.
Czekalla
,
H.
Frenzel
,
M.
Brandt
,
H.
von Wenckstern
, and
M.
Grundmann
,
J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.
27
,
1693
(
2009
).
21.
D.
Taïnoff
,
M.
Al-Khalfioui
,
C.
Deparis
,
B.
Vinter
,
M.
Teisseire
,
C.
Morhain
, and
J.-M.
Chauveau
,
Appl. Phys. Lett.
98
,
131915
(
2011
).
22.
Z. L.
Wang
and
J.
Song
,
Science
312
,
242
(
2006
).
23.
P.
Eyben
,
J.
Mody
,
S. C.
Vemula
, and
W.
Vandervorst
,
J. Vac. Sci. Technol. B
26
,
338
(
2008
).
24.
P.
Eyben
,
S.-C.
Vemula
,
T.
Noda
, and
W.
Vandervorst
, in
2009 International Workshop on Junction Technology
(
IEEE
,
2009
), pp.
74
78
.
25.
H. J.
Ko
,
Y. F.
Chen
,
S. K.
Hong
,
H.
Wenisch
,
T.
Yao
, and
D. C.
Look
,
Appl. Phys. Lett.
77
,
3761
(
2000
).
26.
S.
Sadofev
,
S.
Kalusniak
,
P.
Schäfer
, and
F.
Henneberger
,
Appl. Phys. Lett.
102
,
181905
(
2013
).
27.
D. C.
Look
,
B.
Claflin
, and
H. E.
Smith
,
Appl. Phys. Lett.
92
,
122108
(
2008
).
28.
L.
Wang
,
J.
Laurent
,
J. M.
Chauveau
,
V.
Sallet
,
F.
Jomard
, and
G.
Brémond
,
Appl. Phys. Lett.
107
,
192101
(
2015
).
29.
A. F.
Kohan
,
G.
Ceder
,
D.
Morgan
, and
C. G.
Van de Walle
,
Phys. Rev. B
61
,
15019
(
2000
).
30.
C. G.
Van de Walle
,
Phys. Rev. Lett.
85
,
1012
(
2000
).
31.
S.
Brochen
,
M.
Lafossas
,
I.-C.
Robin
,
P.
Ferret
,
F.
Gemain
,
J.
Pernot
, and
G.
Feuillet
,
J. Appl. Phys.
115
,
113508
(
2014
).
32.
A. D. L.
Bugallo
,
F.
Donatini
,
C.
Sartel
,
V.
Sallet
, and
J.
Pernot
,
Appl. Phys. Express
8
,
025001
(
2015
).
33.
P.
De Wolf
,
J. Vac. Sci. Technol. B
16
,
355
(
1998
).
34.
L. J.
Brillson
and
Y.
Lu
,
J. Appl. Phys.
109
,
121301
(
2011
).
35.
Q. L.
Gu
,
C. K.
Cheung
,
C. C.
Ling
,
A. M. C.
Ng
,
A. B.
Djurišić
,
L. W.
Lu
,
X. D.
Chen
,
S.
Fung
,
C. D.
Beling
, and
H. C.
Ong
,
J. Appl. Phys.
103
,
093706
(
2008
).
You do not currently have access to this content.