Impact of energetic nanoparticles on solids produces craters on the surface. We use molecular dynamics simulations to compare crater production on a compact Au solid with that in a porous (foam) target. Our results show a complex picture: (i) At low impact velocities, the nanoparticles produce permanent craters in the foam while they cannot penetrate the compact target. (ii) With increasing velocity and/or projectile mass, the crater depth in the foam target increases less strongly than for the compact target. The plasticity-affected zone in the foam target is of similar size as in the compact target. Our results are relevant for the use of porous structures as shields against nanoparticle impact.
References
1.
H.
Hsieh
, R. S.
Averback
, H.
Sellers
, and C. P.
Flynn
, Phys. Rev. B
45
, 4417
(1992
).2.
A.
Bouchoule
, Phys. World
6
(8
), 47
(1993
).3.
R. E.
Johnson
, Energetic Charged-Particle Interactions with Atmospheres and Surfaces
(Springer
, Berlin
, 1990
).4.
G. A.
Graham
, N.
McBride
, A. T.
Kearsley
, G.
Drolshagen
, S. F.
Green
, J. A. M.
McDonnell
, M. M.
Grady
, and I. P.
Wright
, Int. J. Impact Eng.
26
, 263
(2001
).5.
S.
Jurac
, M. A.
McGrath
, R. E.
Johnson
, J. D.
Richardson
, V. M.
Vasyliunas
, and A.
Eviatar
, Geophys. Res. Lett.
29
, 2172
, doi: (2002
).6.
L. S.
Novikov
, V. N.
Mileev
, E. N.
Voronina
, L. I.
Galanina
, A. A.
Makletsov
, and V. V.
Sinolits
, J. Surf. Investigation
3
, 199
(2009
).7.
E.
Grossman
, I.
Gouzman
, and R.
Verker
, MRS Bull.
35
, 41
(2010
).8.
N.
Winograd
, Anal. Chem.
77
, 142
A (2005
).9.
N.
Winograd
and B. J.
Garrison
, Annu. Rev. Phys. Chem.
61
, 305
(2010
).10.
S. A.
Thibeault
, J. H.
Kang
, G.
Sauti
, C.
Park
, C. C.
Fay
, and G. C.
King
, MRS Bull.
40
, 836
(2015
).11.
J. F.
Rodriguez-Nieva
, E. M.
Bringa
, T. A.
Cassidy
, R. E.
Johnson
, A.
Caro
, M.
Fama
, M. J.
Loeffler
, R. A.
Baragiola
, and D.
Farkas
, Astrophys. J. Lett.
743
, L5
(2011
).12.
E. M.
Bringa
, J. D.
Monk
, A.
Caro
, A.
Misra
, L.
Zepeda-Ruiz
, M.
Duchaineau
, F.
Abraham
, M.
Nastasi
, S. T.
Picraux
, Y. Q.
Wang
et al., Nano Lett.
12
, 3351
(2012
).13.
E. G.
Fu
, M.
Caro
, L. A.
Zepeda-Ruiz
, Y.
Wang
, K.
Baldwin
, E.
Bringa
, M.
Nastasi
, and A.
Caro
, Appl. Phys. Lett.
101
, 191607
(2012
).14.
J. F.
Rodriguez-Nieva
and E. M.
Bringa
, Nucl. Instrum. Methods Phys. Res., Sect. B
304
, 23
(2013
).15.
C.
Anders
, E. M.
Bringa
, and H. M.
Urbassek
, Nucl. Instrum. Methods Phys. Res., Sect. B
342
, 234
(2015
).16.
J.
Samela
and K.
Nordlund
, Phys. Rev. Lett.
101
, 027601
(2008
).17.
C.
Anders
, E. M.
Bringa
, F. D.
Fioretti
, G.
Ziegenhain
, and H. M.
Urbassek
, Phys. Rev. B
85
, 235440
(2012
).18.
C.
Anders
, G.
Ziegenhain
, C. J.
Ruestes
, E. M.
Bringa
, and H. M.
Urbassek
, New J. Phys.
14
, 083016
(2012
).19.
C.
Anders
, E. M.
Bringa
, G.
Ziegenhain
, G. A.
Graham
, J. F.
Hansen
, N.
Park
, N. E.
Teslich
, and H. M.
Urbassek
, Phys. Rev. Lett.
108
, 027601
(2012
).20.
21.
D. A.
Crowson
, D.
Farkas
, and S. G.
Corcoran
, Scr. Mater.
56
, 919
(2007
).22.
D. A.
Crowson
, D.
Farkas
, and S. G.
Corcoran
, Scr. Mater.
61
, 497
(2009
).23.
T. J.
Colla
, R.
Aderjan
, R.
Kissel
, and H. M.
Urbassek
, Phys. Rev. B
62
, 8487
(2000
).24.
S.
Zimmermann
and H. M.
Urbassek
, Nucl. Instrum. Methods Phys. Res., Sect. B
255
, 208
(2007
).25.
T. J.
Colla
and H. M.
Urbassek
, Nucl. Instrum. Methods Phys. Res., Sect. B
164–165
, 687
(2000
).26.
S.
Zimmermann
and H. M.
Urbassek
, Nucl. Instrum. Methods Phys. Res., Sect. B
228
, 75
(2005
).27.
N.
Ramakrishnan
, Bull. Mater. Sci.
17
, 499
(1994
).28.
G. J.
Ackland
and A. P.
Jones
, Phys. Rev. B
73
, 054104
(2006
).© 2016 AIP Publishing LLC.
2016
AIP Publishing LLC
You do not currently have access to this content.