Optical resonances of crystalline Si nanopillar arrays on a Si substrate are studied using optical reflectivity and Raman spectroscopy. When the nanopillars are arranged in a two-dimensional lattice, a collective resonance is observed in the reflection spectra which is absent for randomly distributed nanopillars. The resonance is due to coherent oscillations in nanopillars, can be tuned spectrally by the nanopillar diameter and lattice period, and strongly suppresses reflection from the Si surface. Raman scattering demonstrates that the reduced reflectivity is accompanied by increased electromagnetic field confined in Si, thus suggesting potential application of the lattice resonance in surface enhanced spectroscopy and thin film solar cells.

1.
F. J.
Lopez
,
J. K.
Hyun
,
U.
Givan
,
I. S.
Kim
,
A. L.
Holsteen
, and
L. J.
Lauhon
,
Nano Lett.
12
(
5
),
2266
(
2012
).
2.
L. Y.
Cao
,
P. Y.
Fan
,
A. P.
Vasudev
,
J. S.
White
,
Z. F.
Yu
,
W. S.
Cai
,
J. A.
Schuller
,
S. H.
Fan
, and
M. L.
Brongersma
,
Nano Lett.
10
(
2
),
439
(
2010
).
3.
L. Y.
Cao
,
P. Y.
Fan
, and
M. L.
Brongersma
,
Nano Lett.
11
(
4
),
1463
(
2011
).
4.
Y. H.
Fu
,
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. F.
Yu
, and
B.
Luk'yanchuk
,
Nat. Commun.
4
,
1527
(
2013
).
5.
P.
Spinelli
,
M. A.
Verschuuren
, and
A.
Polman
,
Nat. Commun.
3
,
692
(
2012
).
6.
S. M.
Wells
,
I. A.
Merkulov
,
I. I.
Kravchenko
,
N. V.
Lavrik
, and
M. J.
Sepaniak
,
ACS Nano
6
(
4
),
2948
(
2012
).
7.
F. J.
Bezares
,
J. P.
Long
,
O. J.
Glembocki
,
J. P.
Guo
,
R. W.
Rendell
,
R.
Kasica
,
L.
Shirey
,
J. C.
Owrutsky
, and
J. D.
Caldwell
,
Opt. Express
21
(
23
),
27587
(
2013
).
8.
A.
Krasnok
,
S.
Makarov
,
M.
Petrov
,
R.
Savelev
,
P.
Belov
, and
Y.
Kivshar
, paper presented at the
10th SPIE Conference on Metamaterials
, Prague, Czech Republic,
2015
;
S.
Jahani
and
Z.
Jacob
,
Nat. Nanotechnol.
11
(
1
),
23
(
2016
).
[PubMed]
9.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
John Wiley & Sons
,
New York
,
1998
), p.
xiv
.
10.
H. A.
Atwater
and
A.
Polman
,
Nat. Mater.
9
(
3
),
205
(
2010
).
11.
L. Y.
Cao
,
P. Y.
Fan
,
E. S.
Barnard
,
A. M.
Brown
, and
M. L.
Brongersma
,
Nano Lett.
10
(
7
),
2649
(
2010
).
12.
K. T.
Carron
,
W.
Fluhr
,
M.
Meier
,
A.
Wokaun
, and
H. W.
Lehmann
,
J. Opt. Soc. Am. B
3
(
3
),
430
(
1986
);
V. A.
Markel
,
J. Phys. B: At., Mol. Opt. Phys.
38
(
7
),
L115
(
2005
).
13.
S. L.
Zou
,
N.
Janel
, and
G. C.
Schatz
,
J. Chem. Phys.
120
(
23
),
10871
(
2004
).
14.
S. L.
Zou
and
G. C.
Schatz
,
Chem. Phys. Lett.
403
(
1–3
),
62
(
2005
).
15.
R.
Adato
,
A. A.
Yanik
,
C. H.
Wu
,
G.
Shvets
, and
H.
Altug
,
Opt. Express
18
(
5
),
4526
(
2010
).
16.
Y. Z.
Chu
,
E.
Schonbrun
,
T.
Yang
, and
K. B.
Crozier
,
Appl. Phys. Lett.
93
(
18
),
181108
(
2008
).
17.
B.
Auguie
and
W. L.
Barnes
,
Phys. Rev. Lett.
101
(
14
),
143902
(
2008
).
18.
A. I.
Vakevainen
,
R. J.
Moerland
,
H. T.
Rekola
,
A. P.
Eskelinen
,
J. P.
Martikainen
,
D. H.
Kim
, and
P.
Torma
,
Nano Lett.
14
(
4
),
1721
(
2014
).
19.
G.
Vecchi
,
V.
Giannini
, and
J. G.
Rivas
,
Phys. Rev. Lett.
102
(
14
),
146807
(
2009
).
20.
W.
Zhou
,
M.
Dridi
,
J. Y.
Suh
,
C. H.
Kim
,
D. T.
Co
,
M. R.
Wasielewski
,
G. C.
Schatz
, and
T. W.
Odom
,
Nat. Nanotechnol.
8
(
7
),
506
(
2013
).
21.
A. B.
Evlyukhin
,
C.
Reinhardt
,
A.
Seidel
,
B. S.
Luk'yanchuk
, and
B. N.
Chichkov
,
Phys. Rev. B
82
(
4
),
045404
(
2010
).
22.
See supplementary material at http://dx.doi.org/10.1063/1.4943785 for additional experimental results, fitting and numerical simulations.
23.
B. D.
Thackray
,
V. G.
Kravets
,
F.
Schedin
,
G.
Anton
,
P. A.
Thomas
, and
A. N.
Grigorenko
,
ACS Photonics
1
(
11
),
1116
(
2014
).
24.
S. R. K.
Rodriguez
,
M. C.
Schaafsma
,
A.
Berrier
, and
J. G.
Rivas
,
Phys. B
407
(
20
),
4081
(
2012
).
25.
K.
Kneipp
,
Phys. Today
60
(
11
),
40
(
2007
).

Supplementary Material

You do not currently have access to this content.