Highly (100),(001)-oriented (Ba0.85Ca0.15)TiO3 (BCT) lead-free piezoelectric ceramics were fabricated by the reactive templated grain growth method using a mixture of plate-like CaTiO3 and BaTiO3 particles. Piezoelectric properties of the ceramics with a high degree of texture were found to be considerably enhanced compared with the BCT ceramics with a low degree of texture. With increasing the Lotgering factor from 26% up to 94%, the piezoelectric properties develop towards the properties of a single crystal. The dynamics of polarization switching was studied over a broad time domain of 8 orders of magnitude and was found to strongly depend on the degree of orientation of the ceramics. Samples with a high degree of texture exhibited 2–3 orders of magnitude faster polarization switching, as compared with the ones with a low degree of texture. This was rationalized by means of the Inhomogeneous Field Mechanism model as a result of the narrower statistical distribution of the local electric field values in textured media, which promotes a more coherent switching process. The extracted microscopic parameters of switching revealed a decrease of the critical nucleus energy in systems with a high degree of texture providing more favorable switching conditions related to the enhanced ferroelectric properties of the textured material.

1.
J.
Rödel
,
W.
Jo
,
K. T. P.
Seifert
,
E.-M.
Anton
,
T.
Granzow
, and
D.
Damjanovic
,
J. Am. Ceram. Soc.
92
,
1153
(
2009
).
2.
I.
Coondoo
,
N.
Panwar
, and
A.
Kholkin
,
J. Adv. Dielectr.
3
,
1330002
(
2013
).
3.
J.
Rödel
,
K. G.
Webber
,
R.
Dittmer
,
W.
Jo
,
M.
Kimura
, and
D.
Damjanovic
,
J. Eur. Ceram. Soc.
35
,
1659
(
2015
).
4.
Y.
Saito
,
H.
Takao
,
T.
Tani
,
T.
Nonoyama
,
K.
Takatori
,
T.
Homma
,
T.
Nagaya
, and
M.
Nakamura
,
Nature
432
,
84
(
2004
).
5.
G. L.
Messing
,
S.
Trolier-McKinstry
,
E. M.
Sabolsky
,
C.
Duran
,
S.
Kwon
,
B.
Brahmaroutu
,
P.
Park
,
H.
Yilmaz
,
P. W.
Rehrig
,
K. B.
Eitel
,
E.
Suvaci
,
M.
Seabaugh
, and
K. S.
Oh
,
Crit. Rev. Solid State Mater. Sci.
29
,
45
(
2004
).
6.
D.
Fu
,
M.
Itoh
,
S.
Koshihara
,
T.
Kosugi
, and
S.
Tsuneyuki
,
Phys. Rev. Lett.
100
,
227601
(
2008
).
7.
K. H.
Brosnan
,
S. F.
Poterala
,
R. J.
Meyer
,
S.
Misture
, and
G. L.
Messing
,
J. Am. Ceram. Soc.
92
,
S133
(
2009
).
8.
S.
Kwon
,
E. M.
Sabolsky
,
G. L.
Messing
, and
S.
Trolier-McKinstry
,
J. Am. Ceram. Soc.
88
,
312
(
2005
).
9.
Y.
Chang
,
S. F.
Poterala
,
Z.
Yang
,
S.
Trolier-McKinstry
, and
G. L.
Messing
,
Appl. Phys. Lett.
95
,
232905
(
2009
).
10.
A. B.
Haugen
,
G. H.
Olsen
,
F.
Madaro
,
M. I.
Morozov
,
G.
Tutuncu
,
J. L.
Jones
,
T.
Grande
, and
M.-A.
Einarsrud
,
J. Am. Ceram. Soc.
97
,
3818
(
2014
).
11.
J. L.
Jones
,
B. J.
Iverson
, and
K. J.
Bowman
,
J. Am. Ceram. Soc.
90
,
2297
(
2007
).
12.
A. B.
Haugen
,
M. I.
Morozov
,
J. L.
Jones
, and
M.-A.
Einarsrud
,
J. Appl. Phys.
116
,
214101
(
2014
).
13.
X. Y.
Ding
,
B.
Shen
,
J. W.
Zhai
,
Z. K.
Xu
,
F.
Fu
,
J. J.
Zhang
, and
X.
Yao
,
Ferroelectrics
401
,
30
(
2010
).
14.
E.
Sabolsky
,
L.
Maldonado
,
M.
Seabaugh
, and
S.
Swartz
,
J. Electroceram.
25
,
77
(
2010
).
15.
A. B.
Haugen
,
M. I.
Morozov
,
M.
Johnsson
,
T.
Grande
, and
M.-A.
Einarsrud
,
J. Appl. Phys.
116
,
134102
(
2014
).
16.
S. K.
Ye
,
J. Y. H.
Fuh
, and
L.
Lu
,
Appl. Phys. Lett.
100
,
252906
(
2012
).
17.
J. F.
Scott
,
Ferroelectric Memories
(
Springer
,
Berlin, Heidelberg
,
2000
).
18.
H.
Ichikawa
,
W.
Sakamoto
,
Y.
Akiyama
,
H.
Maiwa
,
M.
Moriya
, and
T.
Yogo
,
Jpn. J. Appl. Phys., Part 1
52
,
09KD08
(
2013
).
19.
F. K.
Lotgering
,
J. Inorg. Nucl. Chem.
9
,
113
(
1959
).
20.
J. L.
Jones
,
E. B.
Slamovich
, and
K. J.
Bowman
,
J. Mater. Res.
19
,
3414
(
2004
).
21.
S.
Zhukov
,
S.
Fedosov
,
J.
Glaum
,
T.
Granzow
,
Y. A.
Genenko
, and
H.
von Seggern
,
J. Appl. Phys.
108
,
014105
(
2010
).
22.
H.
Orihara
,
S.
Hashimoto
, and
Y.
Ishibashi
,
J. Phys. Soc. Jpn.
63
,
1031
(
1994
).
23.
M.
Molotskii
,
J. Appl. Phys.
88
,
5318
(
2000
).
24.
S.
Jesse
,
B. J.
Rodriguez
,
S.
Choudhury
,
A. P.
Baddorf
,
I.
Vrejoiu
,
D.
Hesse
,
M.
Alexe
,
E. A.
Eliseev
,
A. N.
Morozovska
,
J.
Zhang
,
L.-Q.
Chen
, and
S.
Kalinin
,
Nat. Mater.
7
,
209
(
2008
).
25.
M.
Vopsaroiu
,
J.
Blackburn
,
M. G.
Cain
, and
P. M.
Weaver
,
Phys. Rev. B
82
,
024109
(
2010
).
26.
S.
Zhukov
,
Y. A.
Genenko
,
O.
Hirsch
,
J.
Glaum
,
T.
Granzow
, and
H.
von Seggern
,
Phys. Rev. B
82
,
014109
(
2010
).
27.
Y. A.
Genenko
,
S.
Zhukov
,
S. V.
Yampolskii
,
J.
Schütrumpf
,
R.
Dittmer
,
W.
Jo
,
H.
Kungl
,
M. J.
Hoffmann
, and
H.
von Seggern
,
Adv. Funct. Mater.
22
,
2058
(
2012
).
28.
S.
Zhukov
,
H.
Kungl
,
Y. A.
Genenko
, and
H.
von Seggern
,
J. Appl. Phys.
115
,
014103
(
2014
).
29.
J. Y.
Jo
,
H. S.
Han
,
J.-G.
Yoon
,
T. K.
Song
,
S.-H.
Kim
, and
T. W.
Noh
,
Phys. Rev. Lett.
99
,
267602
(
2007
).
30.
N.
Dabra
,
J. S.
Hundal
,
A.
Nautiyal
,
K. C.
Sekhar
, and
R.
Nath
,
J. Appl. Phys.
108
,
024108
(
2010
).
31.
S.
Zhukov
,
Y. A.
Genenko
, and
H.
von Seggern
,
J. Appl. Phys.
108
,
014106
(
2010
).
32.
33.
M.
Vopsaroiu
,
P. M.
Weaver
,
M. G.
Cain
,
M. J.
Reece
, and
K. B.
Chong
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
1867
(
2011
).
34.
S.
Zhukov
,
Y. A.
Genenko
,
M.
Acosta
,
H.
Humburg
,
W.
Jo
,
J.
Rödel
, and
H.
von Seggern
,
Appl. Phys. Lett.
103
,
152904
(
2013
).
35.
S.
Zhukov
,
M.
Acosta
,
Y. A.
Genenko
, and
H.
von Seggern
,
J. Appl. Phys.
118
,
134104
(
2015
).
You do not currently have access to this content.