In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.

2.
M.
Stoeckli
,
D.
Staab
,
M.
Staufenbiel
,
K. H.
Wiederhold
, and
L.
Signor
,
Anal. Biochem.
311
,
33
(
2002
).
3.
C.
Marsching
,
M.
Eckhardt
,
H.-J.
Gröne
,
R.
Sandhoff
, and
C.
Hopf
,
Anal. Bioanal. Chem.
401
,
53
(
2011
).
4.
D.
Touboul
,
O.
Laprévote
, and
A.
Brunelle
,
Curr. Opin. Chem. Biol.
15
,
725
(
2011
).
5.
D.
Touboul
,
F.
Halgand
,
A.
Brunelle
,
R.
Kersting
,
E.
Tallarek
,
B.
Hagenhoff
, and
O.
Laprévote
,
Anal. Chem.
76
,
1550
(
2004
).
6.
K.
Börner
,
P.
Malmberg
,
J. E.
Månsson
, and
H.
Nygren
,
Int. J. Mass Spectrom.
260
,
128
(
2007
).
7.
A.
Römpp
and
B.
Spengler
,
Histochem. Cell Biol.
139
,
759
(
2013
).
8.
B.
Spengler
and
M.
Hubert
,
J. Am. Soc. Mass Spectrom.
13
,
735
(
2002
).
9.
W.
Bouschen
,
O.
Schulz
,
D.
Eikel
, and
B.
Spengler
,
Rapid Commun. Mass Spectrom.
24
,
355
(
2010
).
10.
J. S.
Fletcher
,
N. P.
Lockyer
, and
J. C.
Vickerman
,
Surf. Interface Anal.
43
,
253
(
2011
).
11.
F.
Kollmer
,
Appl. Surf. Sci.
231–232
,
153
(
2004
).
12.
A.
Brunelle
,
D.
Touboul
, and
O.
Laprévote
,
J. Mass Spectrom.
40
,
985
(
2005
).
13.
J.
Kozole
,
C.
Szakal
,
M.
Kurczy
, and
N.
Winograd
,
Appl. Surf. Sci.
252
,
6789
(
2006
).
14.
J.
Cheng
,
J.
Kozole
,
R.
Hengstebeck
, and
N.
Winograd
,
J. Am. Soc. Mass Spectrom.
18
,
406
(
2007
).
15.
N.
Winograd
,
Anal. Chem.
77
,
142A
(
2005
).
16.
K.
Chughtai
and
R. M. A.
Heeren
,
Chem. Rev.
110
,
3237
(
2010
).
17.
Y.
Nakata
,
H.
Yamada
,
Y.
Honda
,
S.
Ninomiya
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Nucl. Instrum. Methods Phys. Res. B
267
,
2144
(
2009
).
18.
Y.
Nakata
,
Y.
Honda
,
S.
Ninomiya
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
J. Mass Spectrom.
44
,
128
(
2009
).
19.
B. N.
Jones
,
J.
Matsuo
,
Y.
Nakata
,
H.
Yamada
,
J.
Watts
,
S.
Hinder
,
V.
Palitsin
, and
R.
Webb
,
Surf. Interface Anal.
43
,
249
(
2011
).
20.
H.
Yamada
,
K.
Ichiki
,
Y.
Nakata
,
S.
Ninomiya
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Nucl. Instrum. Methods Phys. Res. B
268
,
1736
(
2010
).
21.
T.
Tadić
,
I.
Bogdanović Radović
,
Z.
Siketić
,
D. D.
Cosic
,
N.
Skukan
,
M.
Jaksic
, and
J.
Matsuo
,
Nucl. Instrum. Methods Phys. Res. B
332
,
234
(
2014
).
22.
L.
Jeromel
,
Z.
Siketic
,
N.
Ogrinc Potocnik
,
P.
Vavpetic
,
Z.
Rupnik
,
K.
Bucar
, and
P.
Pelicon
,
Nucl. Instrum. Methods Phys. Res. B
332
,
22
(
2014
).
23.
T.
Seki
,
Y.
Wakamatsu
,
S.
Nakagawa
,
T.
Aoki
,
A.
Ishihara
, and
J.
Matsuo
,
Nucl. Instrum. Methods Phys. Res. B
332
,
326
(
2014
).
24.
J.
Malm
,
D.
Giannaras
,
M. O.
Riehle
,
N.
Gadegaard
, and
P.
Sjövall
,
Anal. Chem.
81
,
7197
(
2009
).
25.
J. C.
Vickerman
and
D.
Briggs
,
TOF-SIMS: Materials Analysis by Mass Spectrometry
, 2nd ed. (
IM Publication LLP and SurfaceSpectra Limited
,
2013
).
26.
H. J.
Whitlow
,
M.
Ren
,
J. A.
van Kan
,
T.
Osipowicz
, and
F.
Watt
,
Nucl. Instrum. Methods Phys. Res. B
267
,
2153
(
2009
).
27.
J. F.
Ziegler
,
Nucl. Instrum. Methods Phys. Res. B
219–220
,
1027
(
2004
).
28.
E. R.
Amstalden van Hove
,
D. F.
Smith
, and
R. M. A.
Heeren
,
J. Chromotogr. A
1217
,
3946
(
2010
).
You do not currently have access to this content.