We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn. We report a reduction of 0.1 V in the average built-in potential, and a reduction of 0.2 V in the average reverse bias breakdown voltage, as measured across the substrate. These reductions indicate that the band gap of the silicon lattice has been reduced due to the incorporation of Sn, as expected from the theoretical analysis. We report the experimentally calculated band gap of SiSn to be 1.11 ± 0.09 eV. This low-cost, CMOS compatible, and scalable process offers a unique opportunity to tune the band gap of silicon for specific applications.

1.
T.
Skotnicki
,
J. A.
Hutchby
,
K.
Tsu-Jae
,
H. S. P.
Wong
, and
F.
Boeuf
,
IEEE Circuits Devices Mag.
21
(
1
),
16
(
2005
).
2.
H.
Fahad
,
A.
Hussain
,
G. T.
Sevilla
, and
M.
Hussain
,
Appl. Phys. Lett.
102
,
134109
(
2013
).
3.
A. N.
Hanna
,
M. T.
Ghoneim
,
R. R.
Bahabry
,
A. M.
Hussain
,
H. M.
Fahad
, and
M. M.
Hussain
,
IEEE Trans. Electron Devices
61
(
9
),
3223
(
2014
).
4.
A. N.
Hanna
,
G. A.
Torres Sevilla
,
M. T.
Ghoneim
,
A. M.
Hussain
,
R. R.
Bahabry
,
A.
Syed
, and
M. M.
Hussain
,
Phys. Status Solidi RRL
8
(
3
),
248
(
2014
).
5.
H. M.
Fahad
,
C. E.
Smith
,
J. P.
Rojas
, and
M. M.
Hussain
,
Nano Lett.
11
(
10
),
4393
(
2011
).
6.
H. M.
Fahad
and
M. M.
Hussain
,
Sci. Rep.
2
,
475
(
2012
).
7.
F.
Schwierz
,
Nat. Nanotechnol.
5
(
7
),
487
(
2010
).
8.
H.
Wang
,
P.
Wei
,
Y.
Li
,
J.
Han
,
H. R.
Lee
,
B. D.
Naab
,
N.
Liu
,
C.
Wang
,
E.
Adijanto
,
B. C.-K.
Tee
,
S.
Morishita
,
Q.
Li
,
Y.
Gao
,
Y.
Cui
, and
Z.
Bao
,
Proc. Natl. Acad. Sci. U. S. A.
111
(
13
),
4776
(
2014
).
9.
A. M.
Hussain
,
G.
Sevilla
,
K. R.
Rader
, and
M. M.
Hussain
, in
Saudi International Electronics, Communications and Photonics Conference (SIECPC), Riyadh, Saudi Arabia
(
2013
), pp.
1
5
.
10.
A. M.
Hussain
,
H. M.
Fahad
,
G. A. T.
Sevilla
, and
M. M.
Hussain
,
Phys. Status Solidi RRL
7
(
11
),
966
(
2013
).
11.
J. J.
Gu
,
O.
Koybasi
,
Y. Q.
Wu
, and
P. D.
Ye
,
Appl. Phys. Lett.
99
(
11
),
112113
(
2011
).
12.
Z.
Rav-Noy
,
L. T.
Lu
,
E.
Kapon
,
S.
Mukai
,
S.
Margalit
, and
A.
Yariv
,
Appl. Phys. Lett.
45
(
3
),
258
(
1984
).
13.
P.
Razavi
and
G.
Fagas
,
Appl. Phys. Lett.
103
(
6
),
063506
(
2013
).
14.
M. L.
Lee
,
E. A.
Fitzgerald
,
M. T.
Bulsara
,
M. T.
Currie
, and
A.
Lochtefeld
,
J. Appl. Phys.
97
(
1
),
011101
(
2005
).
15.
C.-C.
Li
,
K.-S.
Chang-Liao
,
C.-H.
Fu
,
T.-H.
Tzeng
,
C.-C.
Lu
,
H.-Z.
Hong
,
T.-C.
Chen
,
T.-K.
Wang
,
W.-F.
Tsai
, and
C.-F.
Ai
,
Solid-State Electron.
78
,
17
(
2012
).
16.
S.-H.
Huang
,
T.-M.
Lu
,
S.-C.
Lu
,
C.-H.
Lee
,
C. W.
Liu
, and
D. C.
Tsui
,
Appl. Phys. Lett.
101
(
4
),
042111
(
2012
).
17.
A.
Notargiacomo
,
L.
Di Gaspare
,
G.
Scappucci
,
G.
Mariottini
,
F.
Evangelisti
,
E.
Giovine
, and
R.
Leoni
,
Appl. Phys. Lett.
83
(
2
),
302
(
2003
).
18.
A.
Gruhle
,
H.
Kibbel
, and
U.
König
,
Appl. Phys. Lett.
75
(
9
),
1311
(
1999
).
19.
L.
Wang
,
S.
Su
,
W.
Wang
,
X.
Gong
,
Y.
Yang
,
P.
Guo
,
G.
Zhang
,
C.
Xue
,
B.
Cheng
,
G.
Han
, and
Y.-C.
Yeo
,
Solid-State Electron.
83
,
66
(
2013
).
20.
E.
Kasper
,
M.
Kittler
,
M.
Oehme
, and
T.
Arguirov
,
Photonics Res.
1
(
2
),
69
(
2013
).
21.
S.
Wirths
,
R.
Geiger
,
N.
von den Driesch
,
G.
Mussler
,
T.
Stoica
,
S.
Mantl
,
Z.
Ikonic
,
M.
Luysberg
,
S.
Chiussi
,
J. M.
Hartmann
,
H.
Sigg
,
J.
Faist
,
D.
Buca
, and
D.
Grützmacher
,
Nat. Photonics
9
(
2
),
88
(
2015
).
22.
M.
Oehme
,
D.
Buca
,
K.
Kostecki
,
S.
Wirths
,
B.
Holländer
,
E.
Kasper
, and
J.
Schulze
,
J. Cryst. Growth
384
,
71
(
2013
).
23.
E.
Kasper
,
J.
Werner
,
M.
Oehme
,
S.
Escoubas
,
N.
Burle
, and
J.
Schulze
,
Thin Solid Films
520
(
8
),
3195
(
2012
).
24.
S.
Wirths
,
A. T.
Tiedemann
,
Z.
Ikonic
,
P.
Harrison
,
B.
Holländer
,
T.
Stoica
,
G.
Mussler
,
M.
Myronov
,
J. M.
Hartmann
,
D.
Grützmacher
,
D.
Buca
, and
S.
Mantl
,
Appl. Phys. Lett.
102
(
19
),
192103
(
2013
).
25.
S.
Sant
and
A.
Schenk
,
Appl. Phys. Lett.
105
(
16
),
162101
(
2014
).
26.
A. M.
Hussain
,
H. M.
Fahad
,
N.
Singh
,
K. R.
Rader
,
G.
Sevilla
,
U.
Schwingenschlogl
, and
M. M.
Hussain
, in
71st Annual Device Research Conference (DRC), Notre Dame, Indiana, USA
(
2013
), pp.
93
94
.
27.
A. M.
Hussain
,
N.
Singh
,
H.
Fahad
,
K.
Rader
,
U.
Schwingenschlögl
, and
M.
Hussain
,
J. Appl. Phys.
116
(
22
),
224506
(
2014
).
28.
A. M.
Hussain
,
H. M.
Fahad
,
N.
Singh
,
G. A. T.
Sevilla
,
U.
Schwingenschlögl
, and
M. M.
Hussain
,
Phys. Status Solidi RRL
8
(
4
),
332
(
2014
).
29.
A. M.
Hussain
,
H. M.
Fahad
,
N.
Singh
,
G.
Torres Sevilla
,
U.
Schwingenschlogl
, and
M. M.
Hussain
, in
8th IEEE Nanotechnology Materials and Devices Conference (NMDC), Tainan, Taiwan
(
2013
), pp.
13
15
.
30.
A.
Youichi
,
H.
Kazuo
,
N.
Genshiro
,
T.
Katsuhiro
, and
Y.
Yoshinori
,
Jpn. J. Appl. Phys., Part 1
13
(
10
),
1533
(
1974
).
31.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley & Sons
,
2006
), p.
110
.
32.
J. L.
Hudgins
,
G. S.
Simin
,
E.
Santi
, and
M. A.
Khan
,
IEEE Trans. Power Electronics
18
(
3
),
907
(
2003
).
33.
F. A.
Trumbore
,
C. R.
Isenberg
, and
E. M.
Porbansky
,
J. Phys. Chem. Solids
9
,
60
(
1958
).
You do not currently have access to this content.