Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high level of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.

1.
Y.
Chen
,
J.
Au
,
P.
Kazlas
,
A.
Ritenour
,
H.
Gates
, and
M.
McCreary
,
Nature
423
(
6936
),
136
(
2003
).
2.
G. H.
Gelinck
,
H. E. A.
Huitema
,
E.
Van Veenendaal
,
E.
Cantatore
,
L.
Schrijnemakers
,
J.
Van der Putten
,
T. C. T.
Geuns
,
M.
Beenhakkers
,
J. B.
Giesbers
,
B. H.
Huisman
,
E. J.
Meijer
,
E. M.
Benito
,
F. J.
Touwslager
,
A. W.
Marsman
,
B. J. E.
Van Rens
, and
D. M.
De Leeuw
,
Nat. Mater.
3
(
2
),
106
110
(
2004
).
3.
S.
Kim
,
H. J.
Kwon
,
S.
Lee
,
H.
Shim
,
Y.
Chun
,
W.
Choi
,
J.
Kwack
,
D.
Han
,
M.
Song
,
S.
Kim
,
S.
Mohammadi
,
I.
Kee
, and
S. Y.
Lee
,
Adv. Mater.
23
(
31
),
3511
(
2011
).
4.
B.
Yoon
,
D. Y.
Ham
,
O.
Yarimaga
,
H.
An
,
C. W.
Lee
, and
J. M.
Kim
,
Adv. Mater.
23
(
46
),
5492
(
2011
).
5.
R. D.
Ponce Wong
,
J. D.
Posner
, and
V. J.
Santos
,
Sens. Actuators A: Phys.
179
(
0
),
62
69
(
2012
).
6.
D. H.
Kim
,
J. H.
Ahn
,
W. M.
Choi
,
H. S.
Kim
,
T. H.
Kim
,
J. Z.
Song
,
Y. G. Y.
Huang
,
Z. J.
Liu
,
C.
Lu
, and
J. A.
Rogers
,
Science
320
(
5875
),
507
511
(
2008
).
7.
H. C.
Ko
,
M. P.
Stoykovich
,
J. Z.
Song
,
V.
Malyarchuk
,
W. M.
Choi
,
C. J.
Yu
,
J. B.
Geddes
,
J. L.
Xiao
,
S. D.
Wang
,
Y. G.
Huang
, and
J. A.
Rogers
,
Nature
454
(
7205
),
748
753
(
2008
).
8.
D. H.
Kim
,
N. S.
Lu
,
R.
Ma
,
Y. S.
Kim
,
R. H.
Kim
,
S. D.
Wang
,
J.
Wu
,
S. M.
Won
,
H.
Tao
,
A.
Islam
,
K. J.
Yu
,
T. I.
Kim
,
R.
Chowdhury
,
M.
Ying
,
L. Z.
Xu
,
M.
Li
,
H. J.
Chung
,
H.
Keum
,
M.
McCormick
,
P.
Liu
,
Y. W.
Zhang
,
F. G.
Omenetto
,
Y. G.
Huang
,
T.
Coleman
, and
J. A.
Rogers
,
Science
333
(
6044
),
838
843
(
2011
).
9.
N. M.
Farandos
,
A. K.
Yetisen
,
M. J.
Monteiro
,
C. R.
Lowe
, and
S. H.
Yun
,
Adv. Healthcare Mater.
4
(
6
),
792
810
(
2015
).
10.
T.
Someya
,
Stretchable Electronics
(
Wiley-VCH
,
Weinheim
,
2013
), p.
1
online resource (xxi, 462 pages).
11.
R.
Mahajan
,
P.
Brofman
,
R.
Alapati
,
C.
Hilbert
,
L.
Nguyen
,
K.
Maekawa
,
M.
Varughese
,
D.
O'Connor
,
S.
Ramaswami
, and
J.
Candelaria
,
Packaging Needs Document
(
Semiconductor Research Corporation
,
2015
), pp
1
9
.
12.
H.
Yung-Yu
,
K.
Lucas
,
D.
Davis
,
B.
Elolampi
,
R.
Ghaffari
,
C.
Rafferty
, and
K.
Dowling
,
IEEE Trans. Electron Devices
60
(
7
),
2338
2345
(
2013
).
13.
Y.-Y.
Hsu
,
M.
Gonzalez
,
F.
Bossuyt
,
F.
Axisa
,
J.
Vanfleteren
, and
I.
De Wolf
,
J. Micromech. Microeng.
20
(
7
),
075036
(
2010
).
14.
R.
Taylor
,
C.
Boyce
,
M.
Boyce
, and
B.
Pruitt
,
J. Micromech. Microeng.
23
(
10
),
105004
(
2013
).
15.
Y.
Zhang
,
H.
Fu
,
Y.
Su
,
S.
Xu
,
H.
Cheng
,
J. A.
Fan
,
K.-C.
Hwang
,
J. A.
Rogers
, and
Y.
Huang
,
Acta Mater.
61
(
20
),
7816
7827
(
2013
).
16.
Y.
Zhang
,
S.
Wang
,
X.
Li
,
J. A.
Fan
,
S.
Xu
,
Y. M.
Song
,
K. J.
Choi
,
W. H.
Yeo
,
W.
Lee
, and
S. N.
Nazaar
,
Adv. Funct. Mater.
24
(
14
),
2028
2037
(
2014
).
17.
Y.-Y.
Hsu
,
M.
Gonzalez
,
F.
Bossuyt
,
F.
Axisa
,
J.
Vanfleteren
, and
I.
De Wolf
,
Thin Solid Films
519
(
7
),
2225
2234
(
2011
).
18.
M.
Jablonski
,
F.
Bossuyt
,
J.
Vanfleteren
,
T.
Vervust
, and
H.
de Vries
,
Microelectron. Reliab.
53
(
7
),
956
963
(
2013
).
19.
M.
Gonzalez
,
B.
Vandevelde
,
W.
Christiaens
,
Y.-Y.
Hsu
,
F.
Iker
,
F.
Bossuyt
,
J.
Vanfleteren
,
O.
Van der Sluis
, and
P.
Timmermans
,
Microelectron. Reliab.
51
(
6
),
1069
1076
(
2011
).
20.
C.
Lv
,
H.
Yu
, and
H.
Jiang
,
Extreme Mech. Lett.
1
,
29
34
(
2014
).
21.
S.
Béfahy
,
S.
Yunus
,
T.
Pardoen
,
P.
Bertrand
, and
M.
Troosters
,
Appl. Phys. Lett.
91
(
14
),
141911
(
2007
).
22.
J. A.
Rogers
,
T.
Someya
, and
Y.
Huang
,
Science
327
(
5973
),
1603
1607
(
2010
).
23.
E.
Kim
,
H.
Tu
,
C.
Lv
,
H.
Jiang
,
H.
Yu
, and
Y.
Xu
,
Appl. Phys. Lett.
102
(
3
),
033506
(
2013
).
24.
D.-Y.
Khang
,
H.
Jiang
,
Y.
Huang
, and
J. A.
Rogers
,
Science
311
(
5758
),
208
212
(
2006
).
25.
H.
Yung-Yu
,
P.
Cole
,
L.
Daniel
,
W.
Xianyan
,
R.
Milan
,
Z.
Baosheng
, and
G.
Roozbeh
,
J. Micromech. Microeng.
24
(
9
),
095014
(
2014
).
26.
S.
Wagner
and
S.
Bauer
,
MRS Bull.
37
(
03
),
207
213
(
2012
).
27.
N.
Lu
,
X.
Wang
,
Z.
Suo
, and
J.
Vlassak
,
J. Appl. Phys. Lett.
91
(
22
),
221909
(
2007
).
28.
Y.
Xiang
,
T.
Li
,
Z.
Suo
, and
J.
Vlassak
,
J. Appl. Phys. Lett.
87
(
16
),
161910
(
2005
).
29.
S. P.
Lacour
,
J.
Jones
,
S.
Wagner
,
T.
Li
, and
Z.
Suo
,
Proc. IEEE
93
(
8
),
1459
1467
(
2005
).
30.
J.
Jones
,
S. P.
Lacour
,
S.
Wagner
, and
Z.
Suo
,
J. Vacuum Sci. Technol. A
22
(
4
),
1723
1725
(
2004
).
31.
O.
Akogwu
,
D.
Kwabi
,
S.
Midturi
,
M.
Eleruja
,
B.
Babatope
, and
W. O.
Soboyejo
,
Mater. Sci. Eng.: B
170
(
1
),
32
40
(
2010
).
32.
T.
Li
and
Z.
Suo
,
Int. J. Solids Struct.
43
(
7
),
2351
2363
(
2006
).
33.
T.
Li
,
Z.
Huang
,
Z.
Xi
,
S. P.
Lacour
,
S.
Wagner
, and
Z.
Suo
,
Mech. Mater.
37
(
2
),
261
273
(
2005
).
34.
C.
Tsay
,
S. P.
Lacour
,
S.
Wagner
,
T.
Li
, and
Z.
Suo
, “
How stretchable can we make thin metal films?
,” in
MRS Proceedings
(
Cambridge Univ Press
,
2005
), p O5.
5
.
35.
H.
Vandeparre
,
Q.
Liu
,
I. R.
Minev
,
Z.
Suo
, and
S. P.
Lacour
,
Adv. Mater.
25
(
22
),
3117
3121
(
2013
).
36.
R.
Reed
,
C.
McCowan
,
R.
Walsh
,
L.
Delgado
, and
J.
McColskey
,
Mater. Sci. Eng.: A
102
(
2
),
227
236
(
1988
).
37.
See supplementary material at http://dx.doi.org/10.1063/1.4929605 for sample image after failure, a histogram of strain-to-failure data, and a video of the stretching of one of the samples.
38.
R.
Hill
,
The Mathematical Theory of Plasticity
, Oxford Classic Texts in the Physical Sciences (
Oxford University Press
,
1998
).
39.
N.
Bowden
,
S.
Brittain
,
A. G.
Evans
,
J. W.
Hutchinson
, and
G. M.
Whitesides
,
Nature
393
(
6681
),
146
149
(
1998
).
40.
I.
Johnston
,
D.
McCluskey
,
C.
Tan
, and
M.
Tracey
,
J. Micromech. Microeng.
24
(
3
),
035017
(
2014
).
41.
See http://www.indium.com/metals/indium/physical-constants, for “physical constants of pure indium by indium corporation,” (accessed 4 August).

Supplementary Material

You do not currently have access to this content.