By definition, a temporal photonic crystal (TPC) has a permittivity ε(t) that varies periodically with time. We prove that, in the long wavelength limit, a TPC is accurately mimicked by a dynamic transmission line (DTL) having a capacitance (inductance) per unit length equal to ε(t) (μ). Employing a DTL in the microwave region, we measured the photonic band structure, which results to display a genuine wave vector (k or β) gap, in very good agreement with our theoretical model and the equivalent TPC.

1.
C.
Elachi
,
Proc. IEEE
64
,
1666
(
1976
) and references therein.
2.
H.
Kogelnik
and
C. V.
Shank
,
J. Appl. Phys.
43
,
2327
(
1972
).
3.
D.
Heitman
,
N.
Kroo
,
C.
Schulz
, and
Zs.
Szentirmay
,
Phys. Rev. B
35
,
2660
(
1987
), and references therein.
4.
W. L.
Barnes
,
T. W.
Preist
,
S. C.
Kitson
, and
J. R.
Sambles
,
Phys. Rev. B
54
,
6227
(
1996
).
5.
F.
Biancalana
,
A.
Amann
,
A. V.
Uskov
, and
E. P.
O'Reilly
,
Phys. Rev. E
75
,
046607
(
2007
), also introduced the concept of spatiotemporal photonic crystal, namely a grating of a spacetime plane.
6.
M.
Uhlmann
,
G.
Plunien
,
R.
Schützhold
, and
G.
Soff
,
Phys. Rev. Lett.
93
,
193601
(
2004
).
7.
M. F.
Yanik
and
S.
Fan
,
Phys. Rev. Lett.
92
,
083901
(
2004
);
[PubMed]
M. F.
Yanik
and
S.
Fan
,
Phys. Rev. Lett.
93
,
173903
(
2004
);
[PubMed]
S.
Longhi
,
Phys. Rev. E
75
,
026606
(
2007
);
Y.
Sivan
and
J. B.
Pendry
,
Phys. Rev. Lett.
106
,
193902
(
2011
);
[PubMed]
Y.
Sivan
and
J. B.
Pendry
,
Phys. Rev. A
84
,
033822
(
2011
).
8.
Z.
Yu
and
S.
Fan
,
Nat. Photonics
3
,
91
(
2009
);
N. A.
Estep
,
D. L.
Sounas
,
J.
Soric
, and
A.
Alù
,
Nat. Phys.
10
,
923
(
2014
).
9.
P.
Dong
,
S. F.
Preble
,
J. T.
Robinson
,
S.
Manipatruni
, and
M.
Lipson
,
Phys. Rev. Lett.
100
,
033904
(
2008
).
10.
K.
Fang
,
Z.
Yu
, and
S.
Fan
,
Phys. Rev. Lett.
108
,
153901
(
2012
).
11.
W. J.
Padilla
,
A. J.
Taylor
,
C.
Highstrete
,
Mark
Lee
, and
R. D.
Averitt
,
Phys. Rev. Lett.
96
,
107401
(
2006
);
[PubMed]
V. J.
Logeeswaran
,
A. N.
Stameroff
,
M.
Saif Islam
,
W.
Wu
,
A. M.
Bratkovsky
,
P. J.
Kuekes
,
S. Y.
Wang
, and
R. S.
Williams
,
Appl. Phys.
A
87
,
209
(
2007
).
12.
A. R.
Katko
,
S.
Gu
,
J. P.
Barrett
,
B.-I.
Popa
,
G.
Shvets
, and
S. A.
Cummer
,
Phys. Rev. Lett.
105
,
123905
(
2010
).
13.
E.
Poutrina
,
S.
Larouche
, and
D. R.
Smith
,
Opt. Commun.
283
,
1640
(
2010
).
14.
M.
Artamonov
and
T.
Seideman
,
J. Phys. Chem. Lett.
6
,
320
(
2015
).
15.
J. R.
Zurita-Sánchez
,
P.
Halevi
, and
J. C.
Cervantes-González
,
Phys. Rev. A
79
,
053821
(
2009
).
16.
B.
Wang
,
J.
Teng
, and
X.
Yuan
,
Appl. Phys. Lett.
98
,
263111
(
2011
);
B.
Wang
,
J.
Teng
, and
X.
Yuan
,
Appl. Phys. A
107
,
43
(
2012
).
17.
J. R.
Zurita-Sánchez
and
P.
Halevi
,
Phys. Rev. A
81
,
053834
(
2010
).
18.
J. R.
Zurita-Sánchez
,
J. H.
Abundis-Patiño
, and
P.
Halevi
,
Opt. Express
20
,
5586
(
2012
).
19.
J. R.
Reyes-Ayona
and
P.
Halevi
(unpublished).
You do not currently have access to this content.