Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that {100} faceting planes of the equilibrated particles are enriched with Ni and {111} faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

1.
K.
Lee
,
M.
Kim
, and
H.
Kim
,
J. Mater. Chem.
20
,
3791
(
2010
).
2.
C.
Geiger
and
K.
Carvalho-Knighton
,
Environmental Applications of Nanoscale and Microscale Reactive Metal Particles
(
Oxford University Press
,
New York
,
2010
).
3.
T.-C.
Chang
,
F.-Y.
Jian
,
S.-C.
Chen
, and
Y.-T.
Tsai
,
Mater. Today
14
,
608
(
2011
).
4.
Z.
Liu
,
C.
Lee
,
V.
Narayanan
,
G.
Pei
, and
E. C.
Kan
,
IEEE Trans. Electron Devices
49
,
1606
(
2002
).
5.
D.
Wang
,
R.
Ji
,
A.
Albrecht
, and
P.
Schaaf
,
Beilstein J. Nanotechnol.
3
,
651
(
2012
).
6.
Y.-J.
Oh
,
J.-H.
Kim
,
C. V.
Thompson
, and
C. A.
Ross
,
Nanoscale
5
,
401
(
2013
).
7.
D.
Amram
,
L.
Klinger
, and
E.
Rabkin
,
Acta Mater.
61
,
5130
(
2013
).
8.
W. D.
Kaplan
,
D.
Chatain
,
P.
Wynblatt
, and
W. C.
Carter
,
J. Mater. Sci.
48
,
5681
(
2013
).
9.
C. M.
Müller
,
F. C. F.
Mornaghini
, and
R.
Spolenak
,
Nanotechnology
19
,
485306
(
2008
).
10.
A.
Herz
,
D.
Wang
,
R.
Müller
, and
P.
Schaaf
,
Mater. Lett.
102–103
,
22
(
2013
).
11.
M. S.
Kennedy
,
N. R.
Moody
,
D. P.
Adams
,
M.
Clift
, and
D. F.
Bahr
,
Mater. Sci. Eng., A
493
,
299
(
2008
).
12.
C. H.
Lee
,
J.-H.
Kim
,
C.
Zou
,
I. S.
Cho
,
J. M.
Weisse
,
W.
Nemeth
,
Q.
Wang
,
A. C. T.
van Duin
,
T.-S.
Kim
, and
X.
Zheng
,
Sci. Rep.
3
,
2917
(
2013
).
13.
C.
Wolverton
and
A.
Zunger
,
Comput. Mater. Sci.
8
,
107
(
1997
).
14.
D.
Wang
and
P.
Schaaf
,
J. Mater. Chem.
22
,
5344
(
2012
).
15.
D.
Wang
and
P.
Schaaf
,
Phys. Status Solidi A
210
,
1544
(
2013
).
16.
J.
Ye
and
C. V.
Thompson
,
Appl. Phys. Lett.
97
,
071904
(
2010
).
17.
D.
Wang
and
P.
Schaaf
,
Mater. Lett.
70
,
30
(
2012
).
18.
D.
Amram
and
E.
Rabkin
,
ACS Nano
8
,
10687
(
2014
).
19.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
20.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
21.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
22.
T.
Çagin
and
B. M.
Pettitt
,
Phys. Rev. B
39
,
12484
(
1989
).
23.
E.
Güler
and
M.
Güler
,
Adv. Mater. Sci. Eng.
2013
,
525673
(
2013
).
24.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
80
,
891
(
1998
).
26.
R.
Armiento
and
A. E.
Mattsson
,
Phys. Rev. B
72
,
085108
(
2005
).
27.
A. E.
Mattsson
and
R.
Armiento
,
Phys. Rev. B
79
,
155101
(
2009
).
28.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
29.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
30.
S. H.
Wei
,
L. G.
Ferreira
,
J. E.
Bernard
, and
A.
Zunger
,
Phys. Rev. B
42
,
9622
(
1990
).
31.
J.
von Pezold
,
A.
Dick
,
M.
Friák
, and
J.
Neugebauer
,
Phys. Rev. B
81
,
094203
(
2010
).
32.
32-atom supercells consisting of 2 × 2 × 2 fcc elementary cells, 400 eV cut-off energy, 7 × 7 × 7 Morkhorst-Pack k-point meshes, 0.1 eV smearing parameter.
33.
L.
Zhou
,
D.
Holec
, and
P. H.
Mayrhofer
,
J. Appl. Phys.
113
,
043511
(
2013
).
34.
B.
Golding
,
S. C.
Moss
, and
B. L.
Averbach
,
Phys. Rev.
158
,
637
(
1967
).
35.
B.
Golding
and
S. C.
Moss
,
Acta Metall.
15
,
1239
(
1967
).
36.
J. E.
Ayers
,
Heteroepitaxy of Semiconductors
(
CRC Press Taylor and Francis Group
,
Boca Raton
,
2007
).
37.
K.
Barmak
and
K.
Coffey
,
Metallic Films for Electronic, Optical and Magnetic Applications
, 1st ed. (
Woodhead Publishing
,
Sawston
,
2013
).
You do not currently have access to this content.