The capping stressed SiN film is one of the most important process steps for the dislocation stress memorization technique (D-SMT), which has been used widely in the current industry, for the electron mobility booster in the n-type transistor beyond the 32/28 nm technology node. In this work, we found that the different stress-level SiN capping films influence the crystal re-growth velocities along different directions including [100] and [110] directions in Ge a lot. It can be further used to optimize the dislocation angle in the transistor during the D-SMT process and then results in the largest channel stress distribution to boost the device performance in the Ge n-FinFETs. Based on the theoretical calculation and experimental demonstration, it shows that the Ge three dimensional (3D) n-FinFETs device performance is improved ∼55% with the usage of +3 GPa tensile stressed SiN capping film. The channel stress and dislocation angle is ∼2.5 GPa and 30°, measured by the atomic force microscope-Raman technique and transmission electron microscopy, respectively.

1.
K.-Y.
Lim
,
H.
Lee
,
C.
Ryu
,
K.-I.
Seo
,
U.
Kwon
,
S.
Kim
,
J.
Choi
,
K.
Oh
,
H.-K.
Jeon
,
C.
Song
,
T.-O.
Kwon
,
J.
Cho
,
S.
Lee
,
Y.
Sohn
,
H. S.
Yoon
,
J.
Park
,
K.
Lee
,
W.
Kim
,
E.
Lee
,
S.-P.
Sim
,
C. G.
Koh
,
S. B.
Kang
,
S.
Choi
, and
C.
Chung
, “
Novel stress-memorization-technology (SMT) for high electron mobility enhancement of gate last high-k metal gate devices
,”
Tech. Dig. – Int. Electron Devices Meet.
2010
,
229
232
.
2.
T.-M.
Shen
,
Y.-T.
Tung
,
Y.-Y.
Cheng
,
D.-C.
Chiou
,
C.-Y.
Chen
,
C.-C.
Wu
,
Y. M.
Sheu
,
H.-T.
Tsai
,
C. M.
Huang
,
G.
Hsieh
,
G.
Tsai
,
S.
Fung
,
J.
Wu
, and
C. H.
Diaz
, “
Molecular dynamic simulation study of stress memorization in Si dislocations
,”
Tech. Dig. – Int. Electron Devices Meet.
2012
,
697
700
.
3.
Y.
Liu
,
H. V.
Meer
,
O.
Gluschenkov
,
X.
Yang
,
F.
Sato
,
K. H.
Cho
,
M.
Ganz
,
H.
Utomo
,
Y.
Wang
,
U.
Kwon
,
H.
Kothari
,
W.
Mcmahon
,
S.
Uppa
,
M.
Jin
,
C.
Tian
,
W.
Lai
,
R.
Ramachandran
,
E.
Josse
,
S.
Jain
,
V.
Narayanan
,
M.
Eller
,
S.
Samavedam
,
H.
Shang
, and
R.
Divakaruni
, “
NFET effective work function improvement via stress memorization technique in replacement metal gate technology
,” in
Dig. Tech. Pap. - Symp. VLSI Technol.
2013
,
218
219
.
4.
C. E.
Weber
,
S. M.
Cea
,
H.
Deshpande
,
O.
Golonzka
, and
M. Y.
Liu
, “
Modeling of NMOS performance gains from edge dislocation stress
,”
Tech. Dig. – Int. Electron Devices Meet.
2011
,
801
804
.
5.
M.-H.
Liao
,
C.-H.
Chen
,
L.-C.
Chang
, and
C.
Yang
, “
The systematic study and simulation modeling on nano-level dislocation edge stress effects
,”
J. Appl. Phys.
111
,
084510-1
084510-3
(
2012
).
6.
M.-H.
Tsai
,
S.-R.
Jan
,
C.-Y.
Yeh
,
C. W.
Liu
,
R. V.
Goldstein
,
V. A.
Gorodtsov
, and
P. S.
Shushpannikov
, “
Modeling and optimization of edge dislocation stressors
,”
IEEE Electron Device Lett.
34
(
8
),
948
951
(
2013
).
7.
M.-H.
Liao
and
P.-G.
Chen
, “
The demonstration of a D-SMT stressor on Ge planer n-MOSFETs
,”
AIP Adv.
5
,
047147
(
2015
).
8.
M.-H.
Liao
and
P.-G.
Chen
, “
The demonstration of dislocation-stress memorization technique stressor on Si n-FinFETs
,”
IEEE Trans. Nanotechnol.
14
(
4
),
657
(
2015
).
9.
M.-H.
Liao
,
P. G.
Chen
,
S. C.
Huang
,
S. C.
Kao
,
C. X.
Hung
,
K. H.
Liu
,
C.
Lien
, and
C. Y.
Liu
, “
The demonstration of D-SMT stressor on Si and Ge n-FinFETs
,”
Dig. Tech. Pap. - Symp. VLSI Technol.
2014
,
T20
2
.
10.
M. J.
Aziz
,
P. C.
Sabin
,
G.-Q.
Lu
,
C. H.
Lee
, and
C.
Lu
,
Phys. Rev. B
44
,
9812
(
1991
).
11.
S.
Glasstone
,
K. J.
Laidler
, and
H.
Eyring
,
The Theory of Rate Processes
(
McGraw-Hill
,
New York
,
1948
).
12.
A.
Ortiz-Conde
,
F. J.
García Sánchez
, and
J. J.
Liou
, “
On the extraction of threshold voltage, effective channel length, and series resistance of MOSFETs
,”
J. Telecommun. Inform. Technol.
3
(
4
),
43
(
2000
).
13.
C.-F.
Lee
,
R.-Y.
He
,
K.-T.
Chen
,
S.-Y.
Cheng
, and
S. T.
Chang
,
Microelectron. Eng.
138
,
12
(
2015
).
14.
M. H.
Liao
,
T.-H.
Cheng
, and
C. W.
Liu
, “
Infrared emission from Ge metal-insulator-semiconductor tunneling diodes
,”
Appl. Phys. Lett.
89
,
261913
(
2006
).
15.
R.
Zhang
,
J. C.
Lin
,
X.
Yu
,
M.
Takenaka
, and
S.
Takagi
, “
Examination of physical origins limiting effective mobility of Ge MOSFETs and the improvement by atomic deuterium annealing
,”
Dig. Tech. Pap. - Symp. VLSI Technol.
2013
,
T26
.
16.
C. H.
Lee
,
C.
Lu
,
T.
Tabata
,
T.
Nishimura
,
K.
Nagashio
, and
A.
Toriumi
, “
Enhancement of high-N s electron mobility in sub-nm EOT Ge n-MOSFETs
,”
in Dig. Tech. Pap. - Symp. VLSI Technol.
2013
,
T28
.
17.
H.-Y.
Yu
,
M.
Kobayashi
,
J.-H.
Park
,
N.
Yoshio
, and
K. C.
Saraswat
,
IEEE Electron Device Lett.
32
(
4
),
446
(
2011
).
18.
J. H.
Park
,
M.
Tada
,
D.
Kuzum
,
P.
Kapur
,
H. Y.
Yu
, and
H. S. P.
Wong
,
Tech. Dig. – Int. Electron Devices Meet.
2008
,
389
.
You do not currently have access to this content.