We report on how the relaxation of patterns prepared on a thin film can be controlled by manipulating the symmetry of the initial shape. The validity of a lubrication theory for the capillary-driven relaxation of surface profiles is verified by atomic force microscopy measurements, performed on films that were patterned using focused laser spike annealing. In particular, we observe that the shape of the surface profile at late times is entirely determined by the initial symmetry of the perturbation, in agreement with the theory. The results have relevance in the dynamical control of topographic perturbations for nanolithography and high density memory storage.

1.
Polymer Thin Films
, edited by
O. K. C.
Tsui
and
T. P.
Russell
(
World Scientific
,
2008
).
2.
A.
Nunns
,
J.
Gwyther
, and
I.
Manners
,
Polymer (Guildford)
54
,
1269
1284
(
2013
).
3.
D. A.
Boyd
,
New Future Developments Catalysis
, edited by
S. L.
Suib
(
Elsevier
,
2013
), pp.
305
332
.
4.
Y.-C.
Tseng
and
S. B.
Darling
,
Polymers (Basel)
2
,
470
489
(
2010
).
5.
A. P.
Marencic
and
R. A.
Register
,
Annu. Rev. Chem. Biomol. Eng.
1
,
277
297
(
2010
).
6.
I.
Hamley
,
Prog. Polym. Sci.
34
,
1161
1210
(
2009
).
7.
S.-M.
Park
,
O.-H.
Park
,
J. Y.
Cheng
,
C. T.
Rettner
, and
H.-C.
Kim
,
Nanotechnology
19
,
455304
(
2008
).
8.
J. G.
Son
,
J.-B.
Chang
,
K. K.
Berggren
, and
C. A.
Ross
,
Nano Lett.
11
,
5079
5084
(
2011
).
9.
C. M.
Bates
,
T.
Seshimo
,
M. J.
Maher
,
W. J.
Durand
,
J. D.
Cushen
,
L. M.
Dean
,
G.
Blachut
,
C. J.
Ellison
, and
C. G.
Willson
,
Science
338
,
775
779
(
2012
).
10.
J. Y.
Cheng
,
A. M.
Mayes
, and
C. A.
Ross
,
Nat. Mater.
3
,
823
828
(
2004
).
11.
J. Y.
Cheng
,
C. A.
Ross
,
H. I.
Smith
, and
E. L.
Thomas
,
Adv. Mater.
18
,
2505
2521
(
2006
).
12.
I.
Bita
,
J. K. W.
Yang
,
Y. S.
Jung
,
C. A.
Ross
,
E. L.
Thomas
, and
K. K.
Berggren
,
Science
321
,
939
943
(
2008
).
13.
W.
Man
,
M.
Megens
,
P. J.
Steinhardt
, and
P. M.
Chaikin
,
Nature
436
,
993
996
(
2005
).
14.
C.
Sun
,
N.
Fang
,
D. M.
Wu
, and
X.
Zhang
,
Sens. Actuators, A Phys.
121
,
113
120
(
2005
).
15.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
,
Appl. Phys. Lett.
67
,
3114
(
1995
).
16.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
,
Science
272
,
85
87
(
1996
).
17.
M. D.
Austin
and
S. Y.
Chou
,
Appl. Phys. Lett.
81
,
4431
(
2002
).
18.
L. J.
Guo
,
J. Phys. D: Appl. Phys.
37
,
R123
R141
(
2004
).
19.
L.
Guo
,
Adv. Mater.
19
,
495
513
(
2007
).
20.
P.
Vettiger
,
G.
Cross
,
U.
Drechsler
,
U.
Durig
,
B.
Gotsmann
,
W.
Haberle
,
M.
Lantz
,
H.
Rothuizen
,
R.
Stutz
, and
G.
Binnig
,
IEEE Trans. Nanotechnol.
1
,
39
55
(
2002
).
21.
H.
Pozidis
and
P.
Bachtold
, in
Proceedings of the 2006 IEEE Conference on Emerging Technology
(
IEEE
,
2006
), pp.
39
44
.
22.
G. D.
Bixler
and
B.
Bhushan
,
Adv. Funct. Mater.
23
,
4507
4528
(
2013
).
23.
J. B.
Kim
,
P.
Kim
,
N. C.
Pégard
,
S. J.
Oh
,
C. R.
Kagan
,
J. W.
Fleischer
,
H. A.
Stone
, and
Y.-L.
Loo
,
Nat. Photonics
6
,
327
332
(
2012
).
24.
A.
Bay
,
N.
André
,
M.
Sarrazin
,
A.
Belarouci
,
V.
Aimez
,
L. A.
Francis
, and
J. P.
Vigneron
,
Opt. Express
21
(
1
),
A179
A189
(
2013
).
25.
Z.
Fakhraai
and
J. A.
Forrest
,
Science
319
,
600
604
(
2008
).
26.
Z.
Yang
,
Y.
Fujii
,
F. K.
Lee
,
C.-H.
Lam
, and
O. K. C.
Tsui
,
Science
328
,
1676
1679
(
2010
).
27.
Y.
Chai
,
T.
Salez
,
J. D.
McGraw
,
M.
Benzaquen
,
K.
Dalnoki-Veress
,
E.
Raphaël
, and
J. A.
Forrest
,
Science
343
,
994
999
(
2014
).
28.
T.
Leveder
,
S.
Landis
, and
L.
Davoust
,
Appl. Phys. Lett.
92
,
013107
(
2008
).
29.
T.
Leveder
,
E.
Rognin
,
S.
Landis
, and
L.
Davoust
,
Microelectron. Eng.
88
,
1867
1870
(
2011
).
30.
E.
Rognin
,
S.
Landis
, and
L.
Davoust
,
Phys. Rev. E
84
,
041805
(
2011
).
31.
J. D.
McGraw
,
T.
Salez
,
O.
Bäumchen
,
E.
Raphaël
, and
K.
Dalnoki-Veress
,
Phys. Rev. Lett.
109
,
128303
(
2012
).
32.
E.
Rognin
,
S.
Landis
, and
L.
Davoust
,
J. Vac. Sci. Technol., B Microelectron. Nanom. Struct.
30
,
011602
(
2012
).
33.
M.
Benzaquen
,
P.
Fowler
,
L.
Jubin
,
T.
Salez
,
K.
Dalnoki-Veress
, and
E.
Raphaël
,
Soft Matter
10
,
8608
8614
(
2014
).
34.
E.
Rognin
,
S.
Landis
, and
L.
Davoust
,
Langmuir
30
,
6963
6969
(
2014
).
35.
D. J.
Srolovitz
and
S. A.
Safran
,
J. Appl. Phys.
60
,
255
260
(
1986
).
36.
F.
Wyart
and
J.
Daillant
,
Can. J. Phys.
68
,
1084
1088
(
1990
).
37.
R.
Seemann
,
S.
Herminghaus
, and
K.
Jacobs
,
Phys. Rev. Lett.
87
,
196101
(
2001
).
38.
G.
Reiter
,
M.
Hamieh
,
P.
Damman
,
S.
Sclavons
,
S.
Gabriele
,
T.
Vilmin
, and
E.
Raphaël
,
Nat. Mater.
4
,
754
758
(
2005
).
39.
X.-C.
Chen
,
H.-M.
Li
,
F.
Fang
,
Y.-W.
Wu
,
M.
Wang
,
G.-B.
Ma
,
Y.-Q.
Ma
,
D.-J.
Shu
, and
R.-W.
Peng
,
Adv. Mater.
24
,
2637
2641
(
2012
).
40.
E.
Schaffer
,
T.
Thurn-Albrecht
,
T.
Russell
, and
U.
Steiner
,
Nature
403
,
874
877
(
2000
).
41.
M. D.
Morariu
,
N. E.
Voicu
,
E.
Schäffer
,
Z.
Lin
,
T. P.
Russell
, and
U.
Steiner
,
Nat. Mater.
2
,
48
52
(
2003
).
42.
N.
Voicu
,
S.
Harkema
, and
U.
Steiner
,
Adv. Funct. Mater.
16
,
926
934
(
2006
).
43.
C. B.
Kim
,
D. W.
Janes
,
D. L.
McGuffin
, and
C. J.
Ellison
,
J. Polym. Sci. Part B: Polym. Phys.
52
,
1195
1202
(
2014
).
44.
J. M.
Katzenstein
,
C. B.
Kim
,
N. A.
Prisco
,
R.
Katsumata
,
Z.
Li
,
D. W.
Janes
,
G.
Blachut
, and
C. J.
Ellison
,
Macromolecules
47
,
6804
6812
(
2014
).
45.
T. A.
Arshad
,
C. B.
Kim
,
N. A.
Prisco
,
J. M.
Katzenstein
,
D. W.
Janes
,
R. T.
Bonnecaze
, and
C. J.
Ellison
,
Soft Matter
10
,
8043
8050
(
2014
).
46.
J. M.
Katzenstein
,
D. W.
Janes
,
J. D.
Cushen
,
N. B.
Hira
,
D. L.
McGuffin
,
N. A.
Prisco
, and
C. J.
Ellison
,
ACS Macro Lett.
1
,
1150
1154
(
2012
).
47.
F.
Brochard
,
Langmuir
5
,
432
438
(
1989
).
48.
D.
Kataoka
and
S.
Troian
,
Nature
402
,
794
797
(
1999
).
49.
J. P.
Valentino
,
S. M.
Troian
, and
S.
Wagner
,
Appl. Phys. Lett.
86
,
184101
(
2005
).
50.
M.
Dietzel
and
S.
Troian
,
Phys. Rev. Lett.
103
,
074501
(
2009
).
51.
J. P.
Singer
,
P.-T.
Lin
,
S. E.
Kooi
,
L. C.
Kimerling
,
J.
Michel
, and
E. L.
Thomas
,
Adv. Mater.
25
,
6100
6105
(
2013
).
52.
T.
Salez
,
J. D.
McGraw
,
S. L.
Cormier
,
O.
Bäumchen
,
K.
Dalnoki-Veress
, and
E.
Raphaël
,
Eur. Phys. J. E
35
,
114
(
2012
).
53.
O.
Bäumchen
,
M.
Benzaquen
,
T.
Salez
,
J. D.
McGraw
,
M.
Backholm
,
P.
Fowler
,
E.
Raphaël
, and
K.
Dalnoki-Veress
,
Phys. Rev. E
88
,
035001
(
2013
).
54.
M.
Backholm
,
M.
Benzaquen
,
T.
Salez
,
E.
Raphaël
, and
K.
Dalnoki-Veress
,
Soft Matter
10
,
2550
2558
(
2014
).
55.
See supplementary material at http://dx.doi.org/10.1063/1.4927599 for details of the theoretical and experimental methods.
56.
In the general case, although the center of the surface perturbation is not uniquely defined, the results are independent of the choice of the center. For most real experimental features, the position of the center can be chosen quite naturally.
57.
M.
Benzaquen
,
T.
Salez
, and
E.
Raphaël
,
Eur. Phys. J. E.
36
,
82
(
2013
).
58.
J. M.
Hudson
, M.A.Sc. thesis,
McMaster University
,
2004
. http://hdl.handle.net/11375/16668.
59.
J.
Parete
, M.A.Sc. thesis,
McMaster University
,
2008
. See http://hdl.handle.net/11375/16667.

Supplementary Material

You do not currently have access to this content.