We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.
Skip Nav Destination
,
,
,
,
,
Article navigation
27 July 2015
Research Article|
July 27 2015
Atomic vapor spectroscopy in integrated photonic structures
Ralf Ritter;
Ralf Ritter
15. Physikalisches Institut and Center for Integrated Quantum Science and Technology,
Universität Stuttgart
, Pfaffenwaldring 57, 70550 Stuttgart, Germany
Search for other works by this author on:
Nico Gruhler;
Nico Gruhler
2
Institute of Nanotechnology, Karlsruhe Institute of Technology
, 76344 Eggenstein-Leopoldshafen, Germany
Search for other works by this author on:
Wolfram Pernice;
Wolfram Pernice
2
Institute of Nanotechnology, Karlsruhe Institute of Technology
, 76344 Eggenstein-Leopoldshafen, Germany
Search for other works by this author on:
Harald Kübler;
Harald Kübler
15. Physikalisches Institut and Center for Integrated Quantum Science and Technology,
Universität Stuttgart
, Pfaffenwaldring 57, 70550 Stuttgart, Germany
Search for other works by this author on:
Tilman Pfau;
Tilman Pfau
15. Physikalisches Institut and Center for Integrated Quantum Science and Technology,
Universität Stuttgart
, Pfaffenwaldring 57, 70550 Stuttgart, Germany
Search for other works by this author on:
Robert Löw
Robert Löw
a)
15. Physikalisches Institut and Center for Integrated Quantum Science and Technology,
Universität Stuttgart
, Pfaffenwaldring 57, 70550 Stuttgart, Germany
Search for other works by this author on:
Ralf Ritter
1
Nico Gruhler
2
Wolfram Pernice
2
Harald Kübler
1
Tilman Pfau
1
Robert Löw
1,a)
15. Physikalisches Institut and Center for Integrated Quantum Science and Technology,
Universität Stuttgart
, Pfaffenwaldring 57, 70550 Stuttgart, Germany
2
Institute of Nanotechnology, Karlsruhe Institute of Technology
, 76344 Eggenstein-Leopoldshafen, Germany
a)
Electronic mail: [email protected] URL: www.pi5.uni-stuttgart.de
Appl. Phys. Lett. 107, 041101 (2015)
Article history
Received:
May 04 2015
Accepted:
June 09 2015
Citation
Ralf Ritter, Nico Gruhler, Wolfram Pernice, Harald Kübler, Tilman Pfau, Robert Löw; Atomic vapor spectroscopy in integrated photonic structures. Appl. Phys. Lett. 27 July 2015; 107 (4): 041101. https://doi.org/10.1063/1.4927172
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Roadmap on photonic metasurfaces
Sebastian A. Schulz, Rupert. F. Oulton, et al.
Diamagnetic levitation of water realized with a simple device consisting of ordinary permanent magnets
Tomoya Naito, Tomoaki Suzuki, et al.
Charge localization in optoelectronic and photocatalytic applications: Computational perspective
Francesco Ambrosio, Julia Wiktor
Related Content
Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing
Appl. Phys. Lett. (March 2016)
Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center
Appl. Phys. Lett. (January 2014)
Triple stack glass-to-glass anodic bonding for optogalvanic spectroscopy cells with electrical feedthroughs
Appl. Phys. Lett. (July 2014)
Nondiffusive rubidium vapor transport in confined glass channels
J. Vac. Sci. Technol. A (April 2016)
A nanowaveguide platform for collective atom-light interaction
Appl. Phys. Lett. (September 2015)