We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO2/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 1015 cm−2 onto the surface of the Ni/SiO2/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600–900 °C) to form a sp2-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics.

2.
P.
Avouris
and
C.
Dimitrakopoulos
,
Mater. Today
15
,
86
(
2012
).
3.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
4.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
, and
A. K.
Geim
,
Phys. Rev. Lett.
97
,
187401
(
2006
).
5.
C. N. R.
Rao
and
A. K.
Sood
,
Graphene: Synthesis, Properties, and Phenomena
(
Wiley
,
2013
).
6.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
K. S.
Kim
,
J. H.
Ahn
,
P.
Kim
,
J. Y.
Choi
, and
B. H.
Hong
,
Nature
457
,
706
(
2009
).
7.
X.
Li
,
Y.
Zhu
,
W.
Cai
,
M.
Borysiak
,
B.
Han
,
D.
Chen
,
R. D.
Piner
,
L.
Colombo
, and
R. S.
Ruoff
,
Nano Lett.
9
,
4359
(
2009
).
8.
S. A.
Campbell
,
Fabrication Engineering at the Micro- and Nanoscale—Fourth Edition
(
Oxford
,
2013
).
9.
L.
Baraton
,
Z.
He
,
C. S.
Lee
,
J. L.
Maurice
,
C. S.
Cojocaru
,
A. F. G.
Lorenzon
,
Y. H.
Lee
, and
D.
Pribat
,
Nanotechnology
22
,
085601
(
2011
).
10.
G.
Gutierrez
,
F.
Le Normand
,
D.
Muller
,
F.
Aweke
,
C.
Speisser
,
F.
Antoni
,
Y.
Le Gall
,
C. S.
Lee
, and
C. S.
Cojocaru
,
Carbon
66
,
1
(
2014
).
11.
U.
Bangert
,
W.
Pierce
,
D. M.
Kepaptsoglou
,
Q.
Ramasse
,
R.
Zan
,
M. H.
Gass
,
J. A.
Van den Berg
,
C. B.
Boothroyd
,
J.
Amani
, and
H.
Hofsass
,
Nano Lett.
13
,
4902
(
2013
).
12.
J. H.
Mun
,
S. K.
Lim
, and
B. J.
Cho
,
J. Electrochem. Soc.
159
,
G89
(
2012
).
13.
W.
Wesch
,
A.
Heft
,
E.
Wendler
,
T.
Bachmann
, and
E.
Glaser
,
Nucl. Instrum. Methods Phys. Res. B
96
,
335
(
1995
).
14.
A. C.
Ferrari
and
D. M.
Basko
,
Nat. Nanotechnol.
8
,
235
(
2013
).
15.
L.
Liu
,
S.
Ryu
,
M. R.
Tomasik
,
E.
Stolyarova
,
N.
Jung
,
M. S.
Hybertsen
,
M. L.
Steigerwald
,
L. E.
Brus
, and
G. W.
Flynn
,
Nano Lett.
8
,
1965
(
2008
).
16.
P. M.
Ajayan
and
B. I.
Yakobson
,
Nature
441
,
818
(
2006
).
17.
N. M.
Ulmane
,
A.
Kuzmin
,
I.
Steins
,
J.
Grabis
,
I.
Sildos
, and
M.
Pärs
,
J. Phys.: Conf. Ser.
93
,
012039
(
2007
).
You do not currently have access to this content.