Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

1.
C. H.
Bennett
and
G.
Brassard
, “
Quantum cryptography: public key distribution and coin tossing
,” in
Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India
(
IEEE, New York
,
1984
), pp.
175
179
.
2.
N.
Gisin
,
G.
Ribordy
,
W.
Tittel
, and
H.
Zbinden
, “
Quantum cryptography
,”
Rev. Mod. Phys.
74
,
145
195
(
2002
).
3.
A. K.
Ekert
, “
Quantum cryptography based on Bell's theorem
,”
Phys. Rev. Lett.
67
,
661
663
(
1991
).
4.
C. H.
Bennett
,
G.
Brassard
, and
N. D.
Mermin
, “
Quantum cryptography without Bell's theorem
,”
Phys. Rev. Lett.
68
,
557
559
(
1992
).
5.
D.
Naik
,
C.
Peterson
,
A.
White
,
A.
Berglund
, and
P.
Kwiat
, “
Entangled state quantum cryptography: Eavesdropping on the ekert protocol
,”
Phys. Rev. Lett.
84
,
4733
4736
(
2000
).
6.
T.
Jennewein
,
C.
Simon
,
G.
Weihs
,
H.
Weinfurter
, and
A.
Zeilinger
, “
Quantum cryptography with entangled photons
,”
Phys. Rev. Lett.
84
,
4729
4732
(
2000
).
7.
G.
Weihs
,
T.
Jennewein
,
C.
Simon
,
H.
Weinfurter
, and
A.
Zeilinger
, “
Violation of Bell's inequality under strict Einstein locality conditions
,”
Phys. Rev. Lett.
81
,
5039
5043
(
1998
).
8.
C.
Erven
,
C.
Couteau
,
R.
Laflamme
, and
G.
Weihs
, “
Entangled quantum key distribution over two free-space optical links
,”
Opt. Express
16
,
16840
16853
(
2008
).
9.
C. L.
Salter
,
R. M.
Stevenson
,
I.
Farrer
,
C. A.
Nicoll
,
D. A.
Ritchie
, and
A. J.
Shields
, “
An entangled-light-emitting diode
,”
Nature
465
,
594
597
(
2010
).
10.
R. M.
Stevenson
,
C. L.
Salter
,
J.
Nilsson
,
A. J.
Bennett
,
M. B.
Ward
,
I.
Farrer
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Indistinguishable entangled photons generated by a light-emitting diode
,”
Phys. Rev. Lett.
108
,
40503
(
2012
).
11.
J.
Nilsson
,
R. M.
Stevenson
,
K. H. A.
Chan
,
J.
Skiba-Szymanska
,
M.
Lucamarini
,
M. B.
Ward
,
A. J.
Bennett
,
C. L.
Salter
,
I.
Farrer
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Quantum teleportation using a light-emitting diode
,”
Nat. Photonics
7
,
311
315
(
2013
).
12.
A. J.
Hudson
,
R. M.
Stevenson
,
A. J.
Bennett
,
R. J.
Young
,
C. A.
Nicoll
,
P.
Atkinson
,
K.
Cooper
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Coherence of an entangled exciton-photon state
,”
Phys. Rev. Lett.
99
,
266802
(
2007
).
13.
J. G.
Rarity
,
P. C. M.
Owens
, and
P. R.
Tapster
, “
Quantum random-number generation and key sharing
,”
J. Mod. Opt.
41
,
2435
2444
(
1994
).
14.
R. J.
Young
,
R. M.
Stevenson
,
A. J.
Hudson
,
C. A.
Nicoll
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Bell-inequality violation with a triggered photon-pair source
,”
Phys. Rev. Lett.
102
,
30406
(
2009
).
15.
R. M.
Stevenson
,
C. L.
Salter
,
A.
de la Giroday
,
I.
Farrer
,
C. A.
Nicoll
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Coherent entangled light generated by quantum dots in the presence of nuclear magnetic fields
,” e-print arXiv:1103.2969.
16.
B.
Kraus
,
N.
Gisin
, and
R.
Renner
, “
Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication
,”
Phys. Rev. Lett.
95
,
080501
(
2005
).
17.
C. A.
Fuchs
,
N.
Gisin
,
R. B.
Griffiths
,
C.
Niu
, and
A.
Peres
, “
Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy
,”
Phys. Rev. A
56
(
2
),
1163
1172
(
1997
).
18.
E.
Waks
,
A.
Zeevi
, and
Y.
Yamamoto
, “
Security of quantum key distribution with entangled photons against individual attacks
,”
Phys. Rev. A
65
,
052310
(
2002
).
19.
G.
Brassard
and
L.
Salvail
, “
Secret-key reconciliation by public discussion
,” in
Advances in Cryptology—EUROCRYPT'93
, Lecture Notes in Computer Science Vol.
765
, edited by
T.
Helleseth
(
Springer-Verlag
,
Berlin, Heidelberg
,
1994
), pp.
410
423
.
20.
N.
Lütkenhaus
, “
Security against individual attacks for realistic quantum key distribution
,”
Phys. Rev. A
61
,
052304
(
2000
).
21.
A.
Dousse
,
J.
Suffczynski
,
A.
Beveratos
,
O.
Krebs
,
A.
Lemaitre
,
I.
Sagnes
,
J.
Bloch
,
P.
Voisin
, and
P.
Senellart
, “
Ultrabright source of entangled photon pairs
,”
Nature
466
,
217
220
(
2010
).
You do not currently have access to this content.